Anomalous diffusion with absorption: exact time-dependent solutions.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics

Grupo de Medios Porosos, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, CP 1063, Argentina.

Published: February 2000

Recently, analytical solutions of a nonlinear Fokker-Planck equation describing anomalous diffusion with an external linear force were found using a nonextensive thermostatistical Ansatz. We have extended these solutions to the case when an homogeneous absorption process is also present. Some peculiar aspects of the interrelation between the deterministic force, the nonlinear diffusion, and the absorption process are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1103/physreve.61.1417DOI Listing

Publication Analysis

Top Keywords

anomalous diffusion
8
diffusion absorption
8
absorption process
8
absorption exact
4
exact time-dependent
4
time-dependent solutions
4
solutions analytical
4
analytical solutions
4
solutions nonlinear
4
nonlinear fokker-planck
4

Similar Publications

Singularity of Lévy walks in the lifted Pomeau-Manneville map.

Chaos

January 2025

Centre for Complex Systems, School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.

Since groundbreaking works in the 1980s it is well-known that simple deterministic dynamical systems can display intermittent dynamics and weak chaos leading to anomalous diffusion. A paradigmatic example is the Pomeau-Manneville (PM) map which, suitably lifted onto the whole real line, was shown to generate superdiffusion that can be reproduced by stochastic Lévy walks (LWs). Here, we report that this matching only holds for parameter values of the PM map that are of Lebesgue measure zero in its two-dimensional parameter space.

View Article and Find Full Text PDF

The crowded bacterial cytoplasm is composed of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial genetically encoded multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-3,240 to +2,700 e) in live cells.

View Article and Find Full Text PDF

Superdiffusion is usually defined as a random walk process of a molecule, in which the time evolution of the mean-squared displacement, σ2, of the molecule is a power function of time, σ2(t)∼t2/γ, with γ∈(1,2). An equation with a Riesz-type fractional derivative of the order γ with respect to a spatial variable (a fractional superdiffusion equation) is often used to describe superdiffusion. However, this equation leads to the formula σ2(t)=κt2/γ with κ=∞, which, in practice, makes it impossible to define the parameter γ.

View Article and Find Full Text PDF

Single-particle tracking reveals heterogeneous PIEZO1 diffusion.

Biophys J

January 2025

Department of Physiology & Biophysics, UC Irvine, Irvine, California; Department of Biomedical Engineering, UC Irvine, Irvine, California; Center for Complex Biological Systems, UC Irvine, Irvine, California; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, California. Electronic address:

The mechanically-activated ion channel PIEZO1 is critical to numerous physiological processes, and is activated by diverse mechanical cues. The channel is gated by membrane tension and has been found to be mobile in the plasma membrane. We employed single particle tracking (SPT) of endogenous, tdTomato-tagged PIEZO1 using Total Internal Reflection Fluorescence Microscopy in live cells.

View Article and Find Full Text PDF

Background: Improving the compatibility between polylactic acid (PLA) and lignin is crucial for developing innovative PLA-based controlled release systems for pesticides. This study addresses the challenge of enhancing the compatibility of alkali lignin (AL) with PLA by acetylated lignin (ACL). The main aim is to synthesize and evaluate pesticide-loaded microspheres for controlled release performance using fluazinam (FZ) as the model pesticide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!