Surface waves in strongly irradiated dusty plasmas.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics

Kharkov State University and Scientific Centre for Physical Technologies, 2 Novgorodskaya No. 93, 310145 Kharkov, Ukraine.

Published: January 2000

High-frequency surface waves at the interface between two dusty plasmas subject to radiation are considered. Ultraviolet radiation with energy flux larger than the photoelectric work function of the dust surface causes photoemission of electrons. The dust charge and the overall charge balance of the plasma are thus modified. The dispersion properties of the surface waves are investigated for three parameter regimes distinguished by the charging mechanisms in the two plasmas. It is shown that photoemission can significantly affect the plasma and the surface waves.

Download full-text PDF

Source
http://dx.doi.org/10.1103/physreve.61.782DOI Listing

Publication Analysis

Top Keywords

surface waves
16
dusty plasmas
8
surface
5
waves irradiated
4
irradiated dusty
4
plasmas high-frequency
4
high-frequency surface
4
waves interface
4
interface dusty
4
plasmas subject
4

Similar Publications

Background: Treatment of deep carious lesions poses significant challenges in dentistry, as complete lesion removal risks compromising pulp vitality, while selective removal often reduces the longevity of restorations. Herein, we propose a minimally invasive approach using High-Intensity Focused Ultrasound (HIFU) for microscale removal of carious dentine. Concurrently, HIFU's antimicrobial effects against associated cariogenic biofilms and the corresponding thermal and biological impacts on surrounding tissues were investigated.

View Article and Find Full Text PDF

High-resolution Brillouin spectroscopy was employed to investigate the anisotropy in surface wave velocities within a bulk single crystal of SbTe, a well-known layered van der Waals material. By leveraging the bulk elastic constants derived from various simulation methods, we were able to theoretically calculate the distribution of surface acoustic phonon velocities on the cleavage plane of the material. Upon analyzing multiple simulation results, it became evident that the most significant discrepancies arose in the calculations of the elastic constant c, with values ranging from 48 to 98 GPa.

View Article and Find Full Text PDF

The (3+1)-dimensional mKdV-ZK model is an important framework for studying the dynamic behavior of waves in mathematical physics. The goal of this study is to look into more generic travelling wave solutions (TWSs) for the generalized ion-acoustic scenario in three dimensions. These solutions exhibit a combination of rational, trigonometric, hyperbolic, and exponential solutions that are concurrently generated by the new auxiliary equation and the unified techniques.

View Article and Find Full Text PDF

Programmable Electromagnetic Wave Absorption via Tailored Metal Single Atom-Support Interactions.

Adv Mater

January 2025

Laboratory of Advanced Materials, Institute of Optoelectronics, Fudan University, Shanghai, 200438, P. R. China.

Metal single atoms (SA)-support interactions inherently exhibit significant electrochemical activity, demonstrating potential in energy catalysis. However, leveraging these interactions to modulate electronic properties and extend application fields is a formidable challenge, demanding in-depth understanding and quantitative control of atomic-scale interactions. Herein, in situ, off-axis electron holography technique is utilized to directly visualize the interactions between SAs and the graphene surface.

View Article and Find Full Text PDF

Magnetoelectric BAW and SAW Devices: A Review.

Micromachines (Basel)

December 2024

Electrical and Computer Engineering Department, Northeastern University, Boston, MA 02115, USA.

Magnetoelectric (ME) devices combining piezoelectric and magnetostrictive materials have emerged as powerful tools to miniaturize and enhance sensing and communication technologies. This paper examines recent developments in bulk acoustic wave (BAW) and surface acoustic wave (SAW) ME devices, which demonstrate unique capabilities in ultra-sensitive magnetic sensing, compact antennas, and quantum applications. Leveraging the mechanical resonance of BAW and SAW modes, ME sensors achieve the femto- to pico-Tesla sensitivity ideal for biomedical applications, while ME antennas, operating at acoustic resonance, allow significant size reduction, with high radiation gain and efficiency, which is suited for bandwidth-restricted applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!