Nonequilibrium phase transitions induced by multiplicative noise: effects of self-correlation.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics

Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Dean Funes 3350, 7600 Mar del Plata, Argentina.

Published: January 2000

A recently introduced lattice model, describing an extended system which exhibits a reentrant (symmetry-breaking, second-order) noise-induced nonequilibrium phase transition, is studied under the assumption that the multiplicative noise leading to the transition is colored. Within an effective Markovian approximation and a mean-field scheme it is found that when the self-correlation time tau of the noise is different from zero, the transition is also reentrant with respect to the spatial coupling D. In other words, at variance with what one expects for equilibrium phase transitions, a large enough value of D favors disorder. Moreover, except for a small region in the parameter subspace determined by the noise intensity sigma and D, an increase in tau usually prevents the formation of an ordered state. These effects are supported by numerical simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1103/physreve.61.223DOI Listing

Publication Analysis

Top Keywords

nonequilibrium phase
8
phase transitions
8
multiplicative noise
8
transitions induced
4
induced multiplicative
4
noise
4
noise effects
4
effects self-correlation
4
self-correlation introduced
4
introduced lattice
4

Similar Publications

Spin transport properties in a topological insulator sandwiched between two-dimensional magnetic layers.

Sci Rep

January 2025

Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691, Stockholm, Sweden.

Non-trivial band topology along with magnetism leads to different novel quantum phases. When time-reversal symmetry is broken in three-dimensional topological insulators (TIs) through, e.g.

View Article and Find Full Text PDF

Dynamical arrest for globular proteins with patchy attractions.

Soft Matter

January 2025

Division of Physical Chemistry, Department of Chemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden.

Attempts to use colloid science concepts to better understand the dynamic properties of concentrated or crowded protein solutions are challenging due to the fact that globular proteins generally have heterogeneous surfaces that result in anisotropic or patchy contributions to their interaction potential. This is particularly difficult when targeting non-equilibrium transitions such as glass and gel formation in concentrated protein solutions. Here we report a systematic study of the reduced zero shear viscosity of the globular protein -crystallin, an eye lens protein that plays a vital role in vision-related phenomena such as cataract formation or presbyopia, and compare the results to the existing structural and dynamic data.

View Article and Find Full Text PDF

The floating phase, a critical incommensurate phase, has been theoretically predicted as a potential intermediate phase between crystalline ordered and disordered phases. In this study, we investigate the different quantum phases that arise in ladder arrays comprising up to 92 neutral-atom qubits and experimentally observe the emergence of the quantum floating phase. We analyze the site-resolved Rydberg state densities and the distribution of state occurrences.

View Article and Find Full Text PDF

Terahertz Nanoscopy on Low-Dimensional Materials: Toward Ultrafast Physical Phenomena.

ACS Appl Mater Interfaces

January 2025

Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.

Low-dimensional materials (LDMs) with unique electromagnetic properties and diverse local phenomena have garnered significant interest, particularly for their low-energy responses within the terahertz (THz) range. Achieving deep subwavelength resolution, THz nanoscopy offers a promising route to investigate LDMs at the nanoscale. Steady-state THz nanoscopy has been demonstrated as a powerful tool for investigating light-matter interactions across boundaries and interfaces, enabling insights into physical phenomena such as localized collective oscillations, quantum confinement of quasiparticles, and metal-to-insulator phase transitions (MITs).

View Article and Find Full Text PDF

Among expanding discoveries of quantum phases in moiré superlattices, correlated insulators stand out as both the most stable and most commonly observed. Despite the central importance of these states in moiré physics, little is known about their underlying nature. Here, we use pump-probe spectroscopy to show distinct time-domain signatures of correlated insulators at fillings of one (ν = -1) and two (ν = -2) holes per moiré unit cell in the angle-aligned WSe/WS system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!