Background: In the rat model of forebrain ischemia, long-term dexamethasone treatment is reported to cause hyperglycemia and worsen postischemic functional and histologic injury. This effect was assumed to result from glucose enhancement of intraischemic lactic acidosis within the brain. Short-term insulin therapy restored normoglycemia but did not return histologic injury completely to baseline values. Using a nonischemic rat model, the current study attempted to identify a metabolic basis for such outcome data.
Methods: Fifty-eight halothane-anesthetized (1.3% inspired) Sprague-Dawley rats were assigned randomly to be administered either no treatment (N = 18) or 2 mg/kg intraperitoneal dexamethasone (N = 40). The latter were administered dexamethasone 3 h before the study only (N = 8) or for 3 h before the study plus daily for 1 day (N = 8), 2 days (N = 8), or 4 days (N = 16). Of the rats treated with dexamethasone for 4 days, one half (N = 8) were administered an insulin-containing saline infusion subsequently to restore normoglycemia short-term. All other rats (N = 50) were administered an infusion of saline without insulin. Plasma glucose was quantified, and brains were excised after in situ freezing. Brain glucose and glycogen concentrations were measured using enzymatic fluorometric analyses.
Results: After 4 days of dexamethasone treatment, plasma glucose was 159% greater than in rats administered placebo (i.e., 22.01 +/- 4.66 vs. 8.51 +/- 1.65 micromol/ml; mean +/- SD; P < 0.0001). Brain glucose concentrations increased parallel to plasma glucose. An insulin infusion for 27 +/- 5 min restored normoglycemia but resulted in a brain-to-plasma glucose ratio that was 32% greater than baseline values (P < 0.01). Neither dexamethasone nor the combination of dexamethasone plus insulin affected brain glycogen concentrations.
Conclusions: In a nonischemic rat model, dexamethasone alone had no independent effect on the brain-to-plasma glucose ratio. However, short-term insulin therapy caused a dysequilibrium between plasma and brain glucose, resulting in an underestimation of brain glucose concentrations when normoglycemia was restored. The dysequilibrium likely was caused by the rapid rate of glucose reduction. The magnitude of the effect may account for the failure of insulin to reverse dexamethasone enhancement of neurologic injury completely in a previous report that used the rat model of forebrain ischemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00000542-200011000-00022 | DOI Listing |
Geroscience
January 2025
Psychology, School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue S639818, Singapore, Singapore.
In Alzheimer's disease (AD), the accumulation of neuropathological markers such as amyloid-β plaques, neurofibrillary tangles, and cortical neurodegeneration occurs over many years before overt manifestation of cognitive impairment. There is thus a need for neuropsychological markers that are indicative of pathological changes in the early stages of the disease. Intra-individual cognitive variability (IICV), defined as the variation of an individual's performance across cognitive domains, is a promising neuropsychological marker measuring heterogeneous changes in cognition that may reflect these early pathological changes.
View Article and Find Full Text PDFCell Mol Neurobiol
January 2025
Pharmacy Department, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
Neurosurg Rev
January 2025
Lab in Biotechnology and Biosignal Transduction, Department of Orthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai-77, Tamil Nadu, India.
Life Metab
February 2025
New Cornerstone Science Laboratory, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, The Beijing Laboratory of Biomedical Imaging, Peking-Tsinghua Center for Life Sciences, School of Future Technology, Peking University, Beijing 100871, China.
Glucose-stimulated insulin release from pancreatic β-cells is critical for maintaining blood glucose homeostasis. An abrupt increase in blood glucose concentration evokes a rapid and transient rise in insulin secretion followed by a prolonged, slower phase. A diminished first phase is one of the earliest indicators of β-cell dysfunction in individuals predisposed to develop type 2 diabetes.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, P. R. China.
Drug delivery for epilepsy treatment faces enormous challenges, where the sole focus on enhancing the ability of drugs to penetrate the blood-brain barrier (BBB) through ligand modification is insufficient because of the absence of seizure-specific drug accumulation. In this study, an amphipathic drug carrier with a glucose transporter (GLUT)-targeting capability was synthesised by conjugating 2-deoxy-2-amino-D-glucose (2-DG) to the model carrier DSPE-PEG. A 2-DG-modified nano drug delivery system (NDDS) possessing robust stability and favourable biocompatibility was then fabricated using the nanoprecipitation method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!