Autoradiographic localization of 5-HT(2A) receptors in the human brain using [(3)H]M100907 and [(11)C]M100907.

Synapse

Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm, Sweden.

Published: December 2000

M100907 (MDL 100907, R-(+)-alpha-(2, 3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidinemethanol++ +) is a new selective antagonist of 5-HT(2A) receptors. The compound has been labeled with (11)C and proved useful for in vivo studies of 5-HT(2A) receptors using positron emission tomography (PET). In the present study the distribution of 5-HT(2A) receptors was examined in the postmortem human brain using whole hemisphere autoradiography and [(3)H]M100907 and [(11)C]M100907. The autoradiograms showed very dense binding to all neocortical regions, whereas the hippocampus was only weakly labeled with [(3)H]M100907. Other central brain regions, such as the basal ganglia and thalamus, showed low [(3)H]M100907 binding, reflecting low densities of 5-HT(2A) receptors. The cerebellum or structures of the brain stem were virtually devoid of 5-HT(2A) receptors. [(11)C]M100907 gave images qualitatively similar to those of [(3)H]M100907, although with lower spatial resolution. The labeling of human 5-HT(2A) receptors with [(3)H]M100907 was inhibited by the addition of the 5-HT(2A) receptor blockers ketanserin or SCH 23390 (10 microM), leaving a very low background of nonspecific binding. The 5-HT(1A) receptor antagonist WAY-100635 and the D(2)-dopamine receptor antagonist raclopride had no effect on the binding of [(3)H]M100907. The selective labeling of 5-HT(2A) receptors with [(3)H]M100907 clearly shows that this compound is suitable for further studies of the human 5-HT(2A) receptor subtype in vitro. The in vitro autoradiography of the distribution of 5-HT(2A) receptors obtained with radiolabeled M100907 provides detailed qualitative and quantitative information on the distribution of 5-HT(2A)-receptors in the human brain as well as reference information for the interpretation of previous initial results at much lower resolution in humans in vivo with PET and [(11)C]M100907.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1098-2396(20001215)38:4<421::AID-SYN7>3.0.CO;2-XDOI Listing

Publication Analysis

Top Keywords

5-ht2a receptors
36
human brain
12
5-ht2a
11
receptors
9
[3h]m100907
8
[3h]m100907 [11c]m100907
8
distribution 5-ht2a
8
human 5-ht2a
8
receptors [3h]m100907
8
5-ht2a receptor
8

Similar Publications

To elucidate the potential roles of presynaptic and postsynaptic serotonergic activity in impulsivity traits, we investigated the relationship between self-reported impulsiveness and serotonin transporter (5-HTT) and 5-HT2A receptors in healthy individuals. In this study, 26 participants completed 3-Tesla magnetic resonance imaging and positron emission tomography with [C]DASB and [C]MDL100907. To quantify 5-HTT and 5-HT2A receptor availability, the binding potential (BP) of [C]DASB and [C]MDL100907 was derived using the simplified reference tissue model with cerebellar gray matter as the reference region.

View Article and Find Full Text PDF

A Clinically Oriented Review of New Antipsychotics for Schizophrenia.

Neuropsychiatr Dis Treat

December 2024

Department of Medicine and Surgery, Kore University of Enna, Enna (EN), Italy.

Article Synopsis
  • Current antipsychotics mainly target dopamine but often fail to address the complexity of schizophrenia and can cause significant side effects, highlighting a need for new treatments.
  • Recent research is focusing on non-dopaminergic antipsychotics, such as muscarinic agonists and 5-HT2A antagonists, to offer better therapeutic options for schizophrenia.
  • While new drugs like xanomeline-trospium have been approved, others like bitopertin and pimavanserin were halted in development, emphasizing the need for cautious evaluation of their efficacy and safety.
View Article and Find Full Text PDF

Investigating the Mechanisms Involved in Scopolamine-induced Memory Degradation.

Arch Razi Inst

June 2024

Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.

In the present study, the mechanisms involved in scopolamine-induced memory impairment have been investigated. The molecular events that take place during memory mostly include mechanisms that are seen in the acquisition phase. Results showed that one of the mechanisms of memory destruction caused by scopolamine, in addition to weakening the cholinergic system, is the indirect effect of scopolamine on other neurotransmitter systems, including the glutamatergic system.

View Article and Find Full Text PDF

Dimethyltryptamine (DMT) and ibogaine elicit membrane effects in HEK cells transiently transfected with the human 5-HT2A receptor.

Brain Res

December 2024

Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark. Electronic address:

Psychedelics show promise in treating psychiatric disorders. Therapeutic effects appear to involve activation of the 5-Hydroxytryptamine 2A receptor (5-HTR), a G protein-coupled receptor (GPCR). Several SNPs of the 5-HTR naturally occur, which are associated with differences in receptor function and altered responsiveness to treatments.

View Article and Find Full Text PDF

Background: Substance use disorders are multifaceted conditions influenced by both genetic and environmental factors. Serotonergic pathways are known to be involved in substance use disorder susceptibility, with genetic markers within serotonin receptor genes identified as potential risk factors.

Methods: To further explore this relationship, we conducted a study to investigate the association between several polymorphisms in five serotonin receptor genes (, , ) and substance use disorders (SUD) in Jordanian males by sequencing genotypes in 496 SUD patients and 496 healthy controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!