The function and integrity of the basal ganglia is modulated by sex steroids whose activity may be controlled by P450 enzymes, such as members of the CYP2C subfamily. The expression of CYP2C enzymes in rat basal ganglia was examined by immunohistochemistry along with some of the factors that might control their expression. Whereas no CYP2C11 or CYP2C12 immunoreactivity was detected in the basal ganglia of either male or female rats, marked CYP2C13 immunoreactivity was evident in neurones of the subthalamic nucleus, substantia nigra, and interpeduncular nucleus. Strong CYP2C13 immunoreactivity was also expressed in the cortex, olfactory tubercle, hippocampus, dentate gyrus, hypothalamic nuclei, medial habenular nucleus, red nucleus, and medial forebrain bundle. Similar results were found in male and female rats. Following 6-hydroxydopamine lesioning of the nigro-striatal tract, tyrosine hydroxylase immunoreactivity was absent and CYP2C13 immunoreactivity was decreased markedly in the substantia nigra pars compacta, implying its presence in dopaminergic neurones. Modulation of sex steroids, using castrated rats, had no effect on the number of CYP2C13 positive neurones in the substantia nigra pars compacta. These results indicate that CYP2C13 protein is constitutively and widely expressed in rat brain. However, its expression is not sex-specific and is unaffected by castration. The role of CYP2C13 in brain is unknown but it may be involved in the generation of neurosteroids and catecholoestrogens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1098-2396(20001215)38:4<392::AID-SYN4>3.0.CO;2-Z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!