Plasminogen activator inhibitor type 1 is a potential target in renal fibrogenesis.

Kidney Int

INSERM U489, Hôpital Tenon, Paris, France.

Published: November 2000

Plasminogen activator inhibitor type 1 is a potential target in renal fibrogenesis. The progression of renal lesions to fibrosis involves several mechanisms, among which the inhibition of extracellular matrix (ECM) degradation appears to play an important role. Two interrelated proteolytic systems are involved in matrix degradation: the plasminogen activation system and the matrix metalloproteinase system. The plasminogen activator inhibitor type 1 (PAI-1), as the main inhibitor of plasminogen activation, regulates fibrinolysis and the plasmin-mediated matrix metalloproteinase activation. PAI-1 is also a component of the ECM, where it binds to vitronectin. PAI-1 is not expressed in the normal human kidney but is strongly induced in various forms of kidney diseases, leading to renal fibrosis and terminal renal failure. Thrombin, angiotensin II, and transforming growth factor-beta are potent in vitro and in vivo agonists in increasing PAI-1 synthesis. Several experimental and clinical studies support a role for PAI-1 in the renal fibrogenic process occurring in chronic glomerulonephritis, diabetic nephropathy, focal segmental glomerulosclerosis, and other fibrotic renal diseases. Experimental models of renal diseases in PAI-1-deficient animals are in progress, and preliminary results indicate a role for PAI-1 in renal fibrogenesis. Inhibition of PAI-1 activity or of PAI-1 synthesis by specific antibodies, peptidic antagonists, antisense oligonucleotides, or decoy oligonucleotides has been obtained in vitro, but needs to be evaluated in vivo for the prevention or the treatment of renal fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1523-1755.2000.00355.xDOI Listing

Publication Analysis

Top Keywords

plasminogen activator
12
activator inhibitor
12
inhibitor type
12
renal fibrogenesis
12
renal
10
type potential
8
potential target
8
target renal
8
plasminogen activation
8
matrix metalloproteinase
8

Similar Publications

Unlabelled: Chronic back pain (CBP) is the leading cause of disability affecting 1 in 10 people worldwide. Symptoms are marked by persistent lower back pain, reduced mobility, and heightened cold sensitivity. Here, we utilize a mouse model of CBP induced by injecting urokinase-type plasminogen activator (uPA), a proinflammatory agent in the fibrinolytic pathway, between the L2/L3 lumbar vertebrae.

View Article and Find Full Text PDF

Introduction: In the last decades, the recombinant tissue plasminogen activator alteplase has been the standard fibrinolytic treatment of acute myocardial infarction, pulmonary embolism, and acute ischemic stroke. An optimized version of alteplase, tenecteplase, has been developed by exchanging six amino acids to increase half-life, achieve higher fibrin selectivity and increase resistance to plasminogen activator inhibitor-1. Meanwhile, several products containing tenecteplase exist.

View Article and Find Full Text PDF

Background: The benefits of intravenous thrombolysis in patients with acute minor stroke remain controversial. For the aim of providing a better therapeutic strategy, high-quality trials are required to validate the efficacy of thrombolytic medicine other than intravenous recombinant tissue plasminogen and tenecteplase. In the trial, we evaluate the efficacy and safety of urokinase (UK) in acute minor stroke.

View Article and Find Full Text PDF

Background: Fluorescence molecular imaging, a potent and non-invasive technique, has become indispensable in medicine for visualizing molecular processes. In surgical oncology, it aids treatment by allowing visualization of tumor cells during fluorescence-guided surgery (FGS). Targeting the urokinase plasminogen activator receptor (uPAR), overexpressed during tissue remodeling and inflammation, holds promise for advancing FGS by specifically highlighting tumors.

View Article and Find Full Text PDF

Gastric cancer-derived exosomal let-7 g-5p mediated by SERPINE1 promotes macrophage M2 polarization and gastric cancer progression.

J Exp Clin Cancer Res

January 2025

Department of General Surgery, The Second Clinical Medical School, The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, 730000, China.

Background: Tumor-associated macrophages (TAMs), particularly M2-polarized TAMs, are significant contributors to tumor progression, immune evasion, and therapy resistance in gastric cancer (GC). Despite efforts to target TAM recruitment or depletion, clinical efficacy remains limited. Consequently, the identification of targets that specifically inhibit or reprogram M2-polarized TAMs presents a promising therapeutic strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!