Tobacco plants were genetically transformed with the Arabidopsis thaliana heterologous hmg1 gene encoding 3-hydroxy-3-methylglutaryl-CoA reductase, a key enzyme involved in the metabolism of terpenoid compounds. The hmg1 gene was inserted under the control of the 35S RNA double promoter from the cauliflower mosaic virus (CaMV 35S) both in direct and reverse orientation relative to the promoter. DNA analysis by polymerase chain reaction (PCR) and Southern blotting confirmed the transgenic nature of the tobacco plants obtained. DNA-RNA hybridization revealed expression of the hmg1 gene in these tobacco plants. The plants transformed with the antisense copy of the hmg1 gene differed from the control plants in delayed development and in flower color and shape.

Download full-text PDF

Source

Publication Analysis

Top Keywords

tobacco plants
16
hmg1 gene
16
plants
6
hmg1
5
[phenotypic changes
4
changes transgenic
4
tobacco
4
transgenic tobacco
4
plants antisense
4
antisense form
4

Similar Publications

The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.

View Article and Find Full Text PDF

, a medicinal herbaceous plant documented in the Chinese Pharmacopoeia, is a promising candidate for research into plant-derived pharmaceuticals. However, the study of newly emerging viruses that threaten the cultivation of remains limited. In this study, plants exhibiting symptoms such as leaf yellowing, mottled leaves, and vein chlorosis were collected and subjected to RNA sequencing to identify potential viral pathogens.

View Article and Find Full Text PDF

Dufulin Impacts Plant Defense Against Tomato Yellow Leaf Curl Virus Infecting Tomato.

Viruses

December 2024

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.

(TYLCV) poses a significant threat to tomato production, leading to severe yield losses. The current control strategies primarily rely on the use of pesticides, which are often nonselective and costly. Therefore, there is an urgent need to identify more environmentally friendly alternatives.

View Article and Find Full Text PDF

Plant immunity is largely governed by nucleotide-binding leucine-rich repeat receptor (NLR). Here, we examine the molecular activation and inhibition mechanisms of the wheat CC-type NLR , a previously proposed candidate for the resistance gene. Though recent studies have identified as the true gene, Yr10 remains an important NLR in understanding NLR-mediated immunity in wheat.

View Article and Find Full Text PDF

Endophytic fungi possess a unique ability to produce abundant secondary metabolites, which play an active role in the growth and development of host plants. In this study, chemical investigations on the endophytic fungus TE-739D derived from the cultivated tobacco ( L.) afforded two new polyketide derivatives, namely japoniones A () and B (), as well as four previously reported compounds -.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!