Enhancing the immunogenicity of liposomal hepatitis B surface antigen (HBsAg) by controlling its delivery from polymeric microspheres.

J Pharm Sci

Department of Biotechnology Engineering, Sherman Building, Room 217, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.

Published: December 2000

Microencapsulated liposome systems (MELs) were investigated as a potential immunization carrier for a recombinant 22-nm hepatitis B surface antigen (HBsAg) particle. MELs were prepared by first entrapping the HBsAg particles within liposomes composed of phosphatidylcholine:cholesterol (1:1 molar ratio), which were then encapsulated within alginate-poly(L-lysine) (PLL) hydrogel microspheres. The entrapped HBsAg particles retained immunoreactivity, as judged by an enzyme-linked immunosorbent assay (ELISA). Direct imaging of HBsAg particles and HBsAg incorporated into liposomes by cryo-transmission electron microscopy (cryo-TEM) indicated that HBsAg is embedded in the liposomal membrane. The antigenic particles were released from MELs mainly within the context of liposomes. The release rates in vitro and in vivo depended on the molecular weight of PLL used for MEL coating; MELs-214, coated with 214 kDa PLL, released the liposomal HBsAg at much higher rates than MELs-25, which was coated with 25 kDa PLL. Concomitantly, the specific anti-HBsAg titers in mice receiving HBsAg in MELs-214 were higher than those induced by MELs-25. MELs-214 were more efficient than conventional liposomes or alum in eliciting higher and prolonged antibody levels in mice. The ability of MELs to provide an HBsAg depot as well as a sustained release of liposomal HBsAg suggests that these carriers may be an ideal immunoadjuvant.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1520-6017(200012)89:12<1550::aid-jps5>3.0.co;2-zDOI Listing

Publication Analysis

Top Keywords

hbsag particles
12
hbsag
11
hepatitis surface
8
surface antigen
8
antigen hbsag
8
kda pll
8
liposomal hbsag
8
enhancing immunogenicity
4
liposomal
4
immunogenicity liposomal
4

Similar Publications

Since the discovery of the Australia antigen, now known as the hepatitis B surface antigen (HBsAg), significant research has been conducted to elucidate its physical, chemical, structural, and functional properties. Subviral particles (SVPs) containing HBsAg are highly immunogenic, non-infectious entities that have not only revolutionized vaccine development but also provided critical insights into HBV immune evasion and viral assembly. Recent advances in cryo-electron microscopy (cryo-EM) have uncovered the heterogeneity and dynamic nature of spherical HBV SVPs, emphasizing the essential role of lipid-protein interactions in maintaining particle stability.

View Article and Find Full Text PDF

Serum O-glycosylated HBsAg levels correlate with HBV RNA in HBeAg positive CHB patients during antiviral therapy.

Antiviral Res

February 2025

Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. Electronic address:

Background: Recent evidence has indicated that the O-glycosylated PreS2 domain of the middle HBsAg is a distinguishing characteristic that allows the identification of HBsAg of HBV Dane particles and SVPs. This study's objective was to assess the changes in serum O-glycosylated HBsAg levels in CHB patients undergoing ETV or Peg-IFNα treatment.

Methods: Our retrospective study enrolled 86 patients with genotype C CHB.

View Article and Find Full Text PDF

The Hepatitis B surface antigen (HBsAg) as the only lipid-associated envelope protein of the Hepatitis B virus (HBV) acts as cellular attachment and entry mediator of HBV making it the main target of neutralizing antibodies to provide HBV immunity after infection or vaccination. Despite its central role in inducing protective immunity, there is however a surprising lack of comparative studies examining different HBsAgs and their ability to detect anti-HBs antibodies. On the contrary, various time-consuming complex HBsAg production protocols have been established, which result in structurally and functionally insufficiently characterized HBsAg.

View Article and Find Full Text PDF

The aim of this study was to improve the efficacy of Hepatitis B surface antigen (HBsAg) vaccination via liposome-loaded dissolvable microneedle (Lipo-dMN) patches. HBsAg liposomes were prepared using the thin-film hydration method and subsequently incorporated into dissolvable microneedle patches via a pre-vacuum approach. Liposomes, dissolvable microneedle patches (dMN), and Lipo-dMN were characterized for encapsulation efficiency, mechanical properties, morphology, skin insertion, in vitro release, cellular uptake, and in vivo vaccination studies.

View Article and Find Full Text PDF
Article Synopsis
  • PreHevbrio® is a 3-antigen hepatitis B virus (HBV) vaccine designed to produce three types of HBV envelope proteins, leading to a more robust immune response compared to traditional single-antigen vaccines.
  • The study found that the increased immunogenicity of the 3-antigen vaccine is not linked to glycosylation, but rather to its ability to trigger T cell responses specific to the PreS antigens.
  • Results show that the 3-antigen vaccine generates stronger and longer-lasting antibody responses, correlating significantly with T cell activity and better antibody production.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!