Microencapsulated liposome systems (MELs) were investigated as a potential immunization carrier for a recombinant 22-nm hepatitis B surface antigen (HBsAg) particle. MELs were prepared by first entrapping the HBsAg particles within liposomes composed of phosphatidylcholine:cholesterol (1:1 molar ratio), which were then encapsulated within alginate-poly(L-lysine) (PLL) hydrogel microspheres. The entrapped HBsAg particles retained immunoreactivity, as judged by an enzyme-linked immunosorbent assay (ELISA). Direct imaging of HBsAg particles and HBsAg incorporated into liposomes by cryo-transmission electron microscopy (cryo-TEM) indicated that HBsAg is embedded in the liposomal membrane. The antigenic particles were released from MELs mainly within the context of liposomes. The release rates in vitro and in vivo depended on the molecular weight of PLL used for MEL coating; MELs-214, coated with 214 kDa PLL, released the liposomal HBsAg at much higher rates than MELs-25, which was coated with 25 kDa PLL. Concomitantly, the specific anti-HBsAg titers in mice receiving HBsAg in MELs-214 were higher than those induced by MELs-25. MELs-214 were more efficient than conventional liposomes or alum in eliciting higher and prolonged antibody levels in mice. The ability of MELs to provide an HBsAg depot as well as a sustained release of liposomal HBsAg suggests that these carriers may be an ideal immunoadjuvant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1520-6017(200012)89:12<1550::aid-jps5>3.0.co;2-z | DOI Listing |
Viruses
December 2024
Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA.
Since the discovery of the Australia antigen, now known as the hepatitis B surface antigen (HBsAg), significant research has been conducted to elucidate its physical, chemical, structural, and functional properties. Subviral particles (SVPs) containing HBsAg are highly immunogenic, non-infectious entities that have not only revolutionized vaccine development but also provided critical insights into HBV immune evasion and viral assembly. Recent advances in cryo-electron microscopy (cryo-EM) have uncovered the heterogeneity and dynamic nature of spherical HBV SVPs, emphasizing the essential role of lipid-protein interactions in maintaining particle stability.
View Article and Find Full Text PDFAntiviral Res
February 2025
Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. Electronic address:
Background: Recent evidence has indicated that the O-glycosylated PreS2 domain of the middle HBsAg is a distinguishing characteristic that allows the identification of HBsAg of HBV Dane particles and SVPs. This study's objective was to assess the changes in serum O-glycosylated HBsAg levels in CHB patients undergoing ETV or Peg-IFNα treatment.
Methods: Our retrospective study enrolled 86 patients with genotype C CHB.
Protein Sci
January 2025
Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
The Hepatitis B surface antigen (HBsAg) as the only lipid-associated envelope protein of the Hepatitis B virus (HBV) acts as cellular attachment and entry mediator of HBV making it the main target of neutralizing antibodies to provide HBV immunity after infection or vaccination. Despite its central role in inducing protective immunity, there is however a surprising lack of comparative studies examining different HBsAgs and their ability to detect anti-HBs antibodies. On the contrary, various time-consuming complex HBsAg production protocols have been established, which result in structurally and functionally insufficiently characterized HBsAg.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China. Electronic address:
The aim of this study was to improve the efficacy of Hepatitis B surface antigen (HBsAg) vaccination via liposome-loaded dissolvable microneedle (Lipo-dMN) patches. HBsAg liposomes were prepared using the thin-film hydration method and subsequently incorporated into dissolvable microneedle patches via a pre-vacuum approach. Liposomes, dissolvable microneedle patches (dMN), and Lipo-dMN were characterized for encapsulation efficiency, mechanical properties, morphology, skin insertion, in vitro release, cellular uptake, and in vivo vaccination studies.
View Article and Find Full Text PDFVaccine
January 2025
VBI Vaccines Inc, Cambridge, MA, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!