Recent studies have provided evidence for a role of cyclic ADP-ribose (cADPR) in the regulation of intracellular calcium in smooth muscles of the intestine, blood vessels and airways. We investigated the presence and subcellular localization of ADP-ribosyl cyclase, the enzyme that catalyzes the conversion of beta-NAD(+) to cADPR, and cADPR hydrolase, the enzyme that degrades cADPR to ADPR, in tracheal smooth muscle (TSM). Sucrose density fractionation of TSM crude membranes provided evidence that ADP-ribosyl cyclase and cADPR hydrolase activities were associated with a fraction enriched in 5'-nucleotidase activity, a plasma membrane marker enzyme, but not in a fraction enriched in either sarcoplasmic endoplasmic reticulum calcium ATPase or ryanodine receptor channels, both sarcoplasmic reticulum markers. The ADP-ribosyl cyclase and cADPR hydrolase activities comigrated at a molecular weight of approximately 40 kDa on SDS-PAGE. This comigration was confirmed by gel filtration chromatography. Investigation of kinetics yielded K(m) values of 30.4+/-1.5 and 695. 3+/-171.2 microM and V(max) values of 330.4+/-90 and 102.8+/-17.1 nmol/mg/h for ADP-ribosyl cyclase and cADPR hydrolase, respectively. These results suggest a possible role for cADPR as an endogenous modulator of [Ca(2+)](i) in porcine TSM cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0167-4889(00)00077-xDOI Listing

Publication Analysis

Top Keywords

adp-ribosyl cyclase
20
cadpr hydrolase
16
hydrolase activities
12
cyclase cadpr
12
subcellular localization
8
cyclic adp-ribose
8
smooth muscle
8
provided evidence
8
cadpr
8
fraction enriched
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!