Recently published bone fluoride values from Iowa are very high compared to earlier reports, suggesting an increase in fluoride intake. Reanalysis of the Iowa specimens shows levels one-fourth those reported by the Iowa laboratory indicating an error in the original report. Seventeen bone specimens, collected from long-term residents of Rochester, New York, drinking 1 ppm F- water, had a mean value of 2085 +/- 270 ppm F- on an ashed-weight basis. This value is not significantly different from that predicted by the data of Zipkin et al. in 1958. These data, therefore, do not support the contention that there has been an increase in fluoride intake.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02441168 | DOI Listing |
Environ Pollut
January 2025
Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University); Joint Key Laboratory of Endemic Diseases(Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University); Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, People's Republic of China. Electronic address:
Background: Skeletal fluorosis is a chronic metabolic bone disease caused by excessive accumulation of fluoride in the bones. Previous studies have found that when the intake of tea fluoride is similar, the prevalence of skeletal fluorosis varies greatly among different ethnic groups, which may be related to different genetic backgrounds. Single nucleotide polymorphisms (SNPs) of estrogen receptor 1 (ESR1) and collagen type 1 α1 (COL1A1) were strongly associated with bone metabolism as well as bone growth and development, but their association with the risk of skeletal fluorosis has not been reported.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China.
Biogenic hydroxyapatite is known for its osteoinductive potential due to its similarity to human bone and biocompatibility, but insufficient vascularization compared to autogenous bone during early implantation limits bone integration and osteogenesis. Fluorine has been shown to improve hydroxyapatite's mechanical properties and the coupling of osteogenic and angiogenic cells. In this study, fluorine-modified biogenic hydroxyapatite (FPHA) with varying fluorine concentrations was prepared and tested for its ability to promote vascularized osteogenesis.
View Article and Find Full Text PDFAnn Nucl Med
December 2024
Department of Endocrinology and Metabolism, Rare Bone Disease Center, Amsterdam University Medical Centers (UMC), Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam, The Netherlands.
Purpose: [F]NaF PET has become an increasingly important tool in clinical practice toward understanding and evaluating diseases and conditions in which bone metabolism is disrupted. Full kinetic analysis using nonlinear regression (NLR) with a two-tissue compartment model to determine the net rate of influx (K) of [F]NaF is considered the gold standard for quantification of [F]NaF uptake. However, dynamic scanning often is impractical in a clinical setting, leading to the development of simplified semi-quantitative parameters.
View Article and Find Full Text PDFJ Funct Biomater
December 2024
Department of Maxillofacial Orthopaedics and Orthodontics, Pomeranian Medical University in Szczecin, Al. Powst. Wlkp. 72, 70111 Szczecin, Poland.
Bacterial infections are a common cause of clinical complications associated with the use of orthodontic microimplants. Biofilm formation on their surfaces and subsequent infection of peri-implant tissues can result in either exfoliation or surgical removal of these medical devices. In order to improve the properties of microimplants, hybrid coatings enriched with silver nanoparticles, calcium, and phosphorus were investigated.
View Article and Find Full Text PDFScaffolds are of great interest in tissue engineering associated with regenerative medicine owing to their ability to mimic biological structures and provide support for new tissue formation. Several techniques are used to produce biological scaffolds; among them, far-field electrospinning (FFES) process is widely used due to its versatility in producing promising structures similar to native tissues owing to the electrospun nanofibers. On the other hand, near-field electrospinning (NFES) has been investigated due to the possibility of creating scaffolds with suitable architecture for their use in specific biological tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!