Cholesterol 7 alpha-hydroxylase (Cyp7a1) plays a central role in the regulation of bile acid and cholesterol metabolism, and transcription of the gene is controlled by bile acids and hormones acting through a complex interaction with a number of potential steroid-hormone-binding sites. Transcriptional activity of the human CYP7A1 gene promoter transfected into HepG2 cells was decreased in a concentration-dependent manner by co-transfection with an expression vector for peroxisome-proliferator-activated receptor-alpha (PPAR alpha). This effect was augmented by 9-cis-retinoic acid receptor-alpha (RXR alpha) and activators of PPAR alpha to give a maximum inhibition of approx. 80%. The region responsible for this inhibition contained a site known to bind hepatocyte nuclear factor 4 (HNF4), and mutation of this site greatly decreased the effect. Co-expression of HNF4 increased promoter activity and decreased the effect of PPAR alpha. Gel-mobility-shift assays failed to detect any binding of PPAR alpha/RXR alpha dimers to any regions of the promoter containing potential binding sites. Also the hepatic abundance of Cyp7a1 mRNA in mice in which the PPAR alpha gene was disrupted was the same as in normal mice, both during the dark phase, when the animals were feeding, and during the light phase, when mRNA abundance was greatly increased. Cholesterol feeding produced the same increase in hepatic Cyp7a1 mRNA abundance in PPAR alpha-null animals as in normals. It is concluded that, whereas PPAR alpha can affect CYP7A1 gene transcription in vitro through an indirect action, probably by competing for co-factors, this is unlikely to be a major influence on Cyp7a1 activity under normal physiological conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1221415PMC

Publication Analysis

Top Keywords

ppar alpha
20
peroxisome-proliferator-activated receptor-alpha
8
cholesterol alpha-hydroxylase
8
cyp7a1 gene
8
cyp7a1 mrna
8
mrna abundance
8
ppar
7
alpha
7
cyp7a1
6
gene
5

Similar Publications

Background: NXT629, a PPAR-alpha antagonist, exerts widespread effects in many diseases; however, its function and relevant mechanism in cholesterol gallstones (CG) remain largely unknown.

Methods: Male C57BL/6 J mice were fed a regular diet or lithogenic diet (LD), followed by treatment with intraperitoneal injection of NXT629. H&E staining was performed to analyze hepatic pathological changes, and Oil red O staining was conducted to detect lipid accumulation.

View Article and Find Full Text PDF

Mechanisms and clinical applications of palmitoylethanolamide (PEA) in the treatment of neuropathic pain.

Inflammopharmacology

December 2024

Department of Research and Development, First Floor, Molecules Biolabs Private Limited, Commercial Building Kinfra, 3/634Konoor Road, Muringur, Vadakkummuri, Koratty, Mukundapuram, Thrissur, Kerala, 680309, India.

Palmitoylethanolamide (PEA) is emerging as a promising therapeutic agent for neuropathic and other pain-related conditions. This naturally occurring fatty acid has drawn interest because of its ability to regulate pain and inflammation. Initially identified in food sources, PEA has been the subject of extensive research to elucidate its properties, efficacy, and clinical applications.

View Article and Find Full Text PDF

This study investigates the protective effect of ginsenoside Rg1 against manganese (Mn)-induced hepatotoxicity, highlighting its role as a PPAR-γ activator and its impact on TLR4/MyD88/MAPK pathway. Manganese induces liver damage through mechanisms involving oxidative stress and inflammation. Rg1, a principal bioactive compound of ginseng, significantly alleviates Mn-induced liver injury.

View Article and Find Full Text PDF

Deletion of lymphotoxin-β receptor (LTβR) protects against acute kidney injury by PPARα pathway.

Mol Med

December 2024

Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China.

Background: Recent data has shown a considerable advancement in understanding the role of lymphotoxin-β receptor (LTβR) in inflammation. However, the functions and underlying mechanisms of LTβR in acute kidney injury (AKI) remain largely unknown.

Methods: AKI was induced in mice by renal ischemia-reperfusion (I/R).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!