Adult hematopoietic differentiation is a developmental process that employs many of the same molecular mechanisms as embryogenesis. To explore the possibility that hedgehog signaling is involved in the control of hematopoietic differentiation, we screened a panel of human leukemia cell lines for the expression of Patched1 and Smoothened, the receptor and coreceptor for hedgehog ligands. Expression was found in multiple cell lines, and Patched1 expression was detected in normal marrow. Induction of myeloid differentiation in cell lines downregulated expression of both genes. When normal marrow mononuclear cells were grown in semisolid medium in the presence of 10 microM cyclopamine, development of colonies of granulocytic/monocytic lineage was unaffected in terms of both number and morphology. The number of erythroid colonies, however, was significantly reduced (P < 0.01). Furthermore, hemoglobinization was substantially delayed relative to controls in those erythroid colonies that did form. Incubation of hematopoietic progenitors with Shh-N and GM-CSF resulted in increased granulocyte/monocyte colonies (P < 0.01); the increase was blocked by cyclopamine. Incubation of hematopoietic progenitors with Shh-N and stem cell factor resulted in larger erythroid colonies. These results suggest that elements of the hedgehog signaling pathway are involved in the control of hematopoietic differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1006/bcmd.2000.0318DOI Listing

Publication Analysis

Top Keywords

hedgehog signaling
12
hematopoietic differentiation
12
cell lines
12
erythroid colonies
12
blocked cyclopamine
8
involved control
8
control hematopoietic
8
normal marrow
8
incubation hematopoietic
8
hematopoietic progenitors
8

Similar Publications

Objectives: In the last two decades, scientists have gained a better understanding of several aspects of pituitary development. The signaling pathways that govern pituitary morphology and development have been identified, and the compensatory relationships among them are now known.

Aims: This paper aims to emphasize the wide variety of relationships between Pituitary Gland and Stem cells in hormone Production and disease prevention.

View Article and Find Full Text PDF

Basal cell carcinomas (BCC) are driven primarily by cumulative ultraviolet (UV) radiation exposure resulting in activation of the Hedgehog (Hh) signaling pathway, often as a result of UV-mediated Patched-1 (PTCH1) gene inactivation. Accordingly, BCCs most commonly arise at sun-exposed sites such as the head and neck. Very rarely, BCCs can arise at sun-protected sites such as the genital skin and perianal area.

View Article and Find Full Text PDF

Counterregulatory roles of GLI2 and GLI3 in osteogenic differentiation via Gli1 expression.

J Cell Sci

January 2025

Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.

The GLI1/GLI2/GLI3 transcription factors mediate Hedgehog (Hh) signaling, which is crucial for bone development. During intramembranous ossification, mesenchymal stem cells (MSCs) are directly differentiated into osteoblasts. Under basal and Hh pathway-stimulated conditions, primary cilia play essential roles in proteolytic processing of GLI3 to its repressor form (GLI3R), and in activation of GLI2.

View Article and Find Full Text PDF

Cyclopamine inhibits corneal neovascularization and fibrosis by alleviating inflammatory macrophage recruitment and endothelial cell activation.

Int Immunopharmacol

January 2025

Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030 China. Electronic address:

Purpose: To explore the function of cyclopamine in corneal neovascularization and subsequent fibrosis after cornea alkali-burn injury.

Methods: In vivo, mice cornea were injured by NaOH, and then treated with cyclopamine, clodronate liposomes (CLO-LPS), and vehicle of cyclopamine separately by subconjunctival injections. Clinical features were observed and pathological characteristics were examined.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFASs) inhibit larval metamorphosis by impairing larval muscle degeneration in the mussel Mytilus coruscus.

J Hazard Mater

January 2025

International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China. Electronic address:

Per- and polyfluoroalkyl substances (PFASs), including perfluorooctane sulfonate (PFOS) and its alternative 6:2 chlorinated polyfluoroalkyl ether sulfonate (F53B), are widely used in industries, leading to their presence in aquatic environments and potential adverse effects on marine organisms, particularly during early development. This study investigates the effects of PFOS and F53B on larval development and metamorphosis in Mytilus coruscus. Exposure to 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!