A (2 + 1) one-colour resonance-enhanced multiphoton ionisation study is carried out on the C 2 sigma- state of the ClO radical in the one-photon energy range 29,500-31,250 cm-1. The ClO radical is produced by one-photon photolysis of ClO2 employing 359.2 nm photons derived from a separate laser. In this way a significant concentration of vibrationally excited ClO in its spin-orbit split X 2 pi omega (omega = 3/2 or 1/2) electronic ground state is produced. In addition to mass-resolved excitation spectra, kinetic-energy resolved photoelectron spectra for the X 3 sigma-(v+)<--C 2 sigma-(v' = 3-5) transitions are measured. These transitions are not completely Frank-Condon diagonal, and indicate a decrease in bond length on removal of the Rydberg electron from the C 2 sigma- state. In addition to an unambiguous assignment of the C 2 sigma- state, valuable information is obtained on the degree of vibrational excitation with which the nascent ClO radical is formed in the photolysis of ClO2. Analysis of the photoelectron spectra is supported by Franck-Condon calculations based on potential energy curves either from experimental spectroscopic parameters, or obtained by theoretical ab initio methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/a909273k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!