To clarify the mechanism of cephalosporin nephrotoxicity, the cytotoxic effects of cephaloridine (CER), a nephrotoxic cephalosporin antibiotic, on the pig kidney proximal tubular epithelial cell line (LLC-PK1) were studied in culture. CER increased the content of hydrogen peroxide and decreased the activity of catalase in the treated cells, followed by an increase in the content of lipid peroxide and decreases in both glutathione peroxidase activity and in the non-protein sulfhydryl content. The levels of NADPH-dependent hydrogen peroxide and superoxide anion production by microsomes prepared from LLC-PK1 cells, and by NADPH-cytochrome P-450 reductase purified from the rat renal cortex were significantly increased by paraquat. The production of these molecules was antagonized by p-chloromer-curibenzoate, an inhibitor of NADPH-cytochrome P-450 reductase. On the other hand, CER did not significantly affect the production of hydrogen peroxide or superoxide anions. These results suggested that the cytotoxic effect of CER on cultured LLC-PK1 cells was due to the increases in hydrogen peroxide and lipid peroxide levels and not microsomal oxygen radical production, and that the mechanism of this cytotoxicity is very different from that of paraquat which induces microsomal oxygen radical production.

Download full-text PDF

Source
http://dx.doi.org/10.1292/jvms.62.977DOI Listing

Publication Analysis

Top Keywords

hydrogen peroxide
16
oxygen radical
12
radical production
12
lipid peroxide
8
peroxide superoxide
8
llc-pk1 cells
8
nadph-cytochrome p-450
8
p-450 reductase
8
microsomal oxygen
8
production
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!