Unlike numerous pore-forming amphiphilic peptide antibiotics, the lantibiotic nisin is active in nanomolar concentrations, which results from its ability to use the lipid-bound cell wall precursor lipid II as a docking molecule for subsequent pore formation. Here we use genetically engineered nisin variants to identify the structural requirements for the interaction of the peptide with lipid II. Mutations affecting the conformation of the N-terminal part of nisin comprising rings A through C, e.g. [S3T]nisin, led to reduced binding and increased the peptide concentration necessary for pore formation. The binding constant for the S3T mutant was 0.043 x 10(7) m(-1) compared with 2 x 10(7) m(-1) for the wild-type peptide, and the minimum concentration for pore formation increased from the 1 nm to the 50 nm range. In contrast, peptides mutated in the flexible hinge region, e.g. [DeltaN20/DeltaM21]nisin, were completely inactive in the pore formation assay, but were reduced to some extent in their in vivo activity. We found the remaining in vivo activity to result from the unaltered capacity of the mutated peptide to bind to lipid II and thus to inhibit its incorporation into the peptidoglycan network. Therefore, through interaction with the membrane-bound cell wall precursor lipid II, nisin inhibits peptidoglycan synthesis and forms highly specific pores. The combination of two killing mechanisms in one molecule potentiates antibiotic activity and results in nanomolar MIC values, a strategy that may well be worth considering for the construction of novel antibiotics.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M006770200DOI Listing

Publication Analysis

Top Keywords

pore formation
20
precursor lipid
12
cell wall
12
antibiotic activity
8
wall precursor
8
concentration pore
8
107 m-1
8
vivo activity
8
nisin
5
lipid
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!