Motivation: Several results in the literature suggest that biologically interesting RNAs have secondary structures that are more stable than expected by chance. Based on these observations, we developed a scanning algorithm for detecting noncoding RNA genes in genome sequences, using a fully probabilistic version of the Zuker minimum-energy folding algorithm.

Results: Preliminary results were encouraging, but certain anomalies led us to do a carefully controlled investigation of this class of methods. Ultimately, our results argue that for the probabilistic model there is indeed a statistical effect, but it comes mostly from local base-composition bias and not from RNA secondary structure. For the thermodynamic implementation (which evaluates statistical significance by doing Monte Carlo shuffling in fixed-length sequence windows, thus eliminating the base-composition effect) the signals for noncoding RNAs are still usually indistinguishable from noise, especially when certain statistical artifacts resulting from local base-composition inhomogeneity are taken into account. We conclude that although a distinct, stable secondary structure is undoubtedly important in most noncoding RNAs, the stability of most noncoding RNA secondary structures is not sufficiently different from the predicted stability of a random sequence to be useful as a general genefinding approach.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/16.7.583DOI Listing

Publication Analysis

Top Keywords

secondary structure
12
noncoding rnas
12
secondary structures
8
noncoding rna
8
local base-composition
8
rna secondary
8
secondary
5
noncoding
5
structure generally
4
generally statistically
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!