The small monomeric GTP-binding proteins of the RAB subfamily are key regulatory elements of the machinery that controls membrane traffic in eukaryotic cells. These proteins have been localized to many different intracellular organelles, on both endocytic and exocytic compartments, suggesting that each step of vesicular traffic can involve a specific RAB protein. The presence of conserved amino acid domains in these proteins has allowed the cloning of their genes from several organisms, including yeast, plants, humans, and parasites. In this work we describe the identification, cloning, and characterization of a RAB7 gene homologue in Trypanosoma cruzi (TcRAB7). Our data indicate that this gene is present as a single copy in the T. cruzi genome, located on a 2.25-Mb chromosomal DNA. TcRAB7 is expressed in T. cruzi epimastigotes, metacyclic trypomastigotes, and spheromastigotes. We established transformed cell lines that express two versions of an epitope-tagged TcRAB7 protein: one wild type (pTAG) and one deleted at the C-terminal cysteines (pDeltaCXC). Wild-type TcRAB7 protein (pTAG) appears to be localized exclusively in the membrane fraction, while the mutated TcRAB7 protein (pDeltaCXC) loses the ability to associate with the membrane, showing only cytosolic localization. Also, we produced the recombinant TcRAB7 protein and demonstrated that it binds GTP. The identification of exo- and endocytic machinery components in T. cruzi and their function would provide specific markers of these subcellular compartments, thereby unveiling important aspects of vesicular traffic in this parasite.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/expr.2000.4549 | DOI Listing |
Pest Manag Sci
May 2023
Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, Kansas, USA.
Background: Clathrin-dependent endocytosis is a vesicular transport process by which cells take macromolecules from the extracellular space to the intracellular space. It plays important roles in various cellular functions, but its biological significance in insect development and reproduction has not been well studied.
Results: We characterized and functionally analyzed four major clathrin-dependent endocytic pathway genes (TcChc, TcAP50, TcVhaSFD, TcRab7) in Tribolium castaneum.
Insect Biochem Mol Biol
May 2015
Department of Entomology, Kansas State University, Manhattan, KS 66506, USA. Electronic address:
RNA interference (RNAi) is a highly conserved gene regulatory mechanism in eukaryotic organisms; however, an understanding of mechanisms of cellular uptake of double-stranded RNA (dsRNA) in different organisms remains elusive. By using pharmacological inhibitors of different endocytic pathways in conjunction with RNAi of a marker gene (lethal giant larvae, TcLgl) in the red flour beetle (Tribolium castaneum), we demonstrated that two inhibitors (chlorpromazine and bafilomycin-A1) of clathrin-dependent endocytosis can nearly abolish or significantly diminish RNAi of TcLgl, whereas methyl-β-cyclodextrin and cytochalasin-D, known to inhibit other endocytic pathways, showed no effect on RNAi of TcLgl. By using Cy3-labeled TcLgl dsRNA, we observed significantly reduced cellular uptake of TcLgl dsRNA in midgut cells after larvae were injected with each of the two clathrin-dependent endocytosis inhibitors.
View Article and Find Full Text PDFBMC Cell Biol
June 2014
Laboratory of Cell Biology, Carlos Chagas Institute, Fiocruz, Rua Professor Algacyr Munhoz Mader 3775, 81350-010 Curitiba, PR, Brazil.
Background: Clathrin-mediated vesicular trafficking, the mechanism by which proteins and lipids are transported between membrane-bound organelles, accounts for a large proportion of import from the plasma membrane (endocytosis) and transport from the trans-Golgi network towards the endosomal system. Clathrin-mediated events are still poorly understood in the protozoan Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. In this study, clathrin heavy (TcCHC) and light (TcCLC) chain gene expression and protein localization were investigated in different developmental forms of T.
View Article and Find Full Text PDFExp Parasitol
May 2013
Laboratório de Biologia Celular, Instituto Carlos Chagas/Fiocruz, Curitiba, PR, Brazil.
Protein palmitoylation is a post-translational modification that contributes to determining protein localization and function. Palmitoylation has been described in trypanosomatid protozoa, but no zDHHC palmitoyl transferase has been identified in Trypanosoma cruzi, the etiological agent of Chagas disease in Latin America. In this study we identify and show the subcellular localization of TcHIP (Tc00.
View Article and Find Full Text PDFBMC Microbiol
October 2010
Instituto Carlos Chagas, FIOCRUZ, Curitiba, Parana, Brazil.
Background: The three trypanosomatids pathogenic to men, Trypanosoma cruzi, Trypanosoma brucei and Leishmania major, are etiological agents of Chagas disease, African sleeping sickness and cutaneous leishmaniasis, respectively. The complete sequencing of these trypanosomatid genomes represented a breakthrough in the understanding of these organisms. Genome sequencing is a step towards solving the parasite biology puzzle, as there are a high percentage of genes encoding proteins without functional annotation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!