Epileptic seizures increase the expression of brain-derived neurotrophic factor in the hippocampus. Since this neurotrophin exerts modulatory effects on neuronal excitability in this structure, it may play an important role in hippocampal epileptogenesis. This question was addressed by studying the effects of chronic infusions of recombinant brain-derived neurotrophic factor and brain-derived neurotrophic factor antisense in the hippocampus during the first seven days of hippocampal kindling. Infusion with brain-derived neurotrophic factor (6-24 microg/day) significantly delayed the progression of standard hippocampal kindling and strongly suppressed seizures induced by rapid hippocampal kindling. These suppressive effects were dose dependent, long lasting, not secondary to neuronal toxicity and specific to this neurotrophin, as nerve growth factor accelerated hippocampal kindling progression. They also appeared to be specific to the hippocampus, as infusion of brain-derived neurotrophic factor (48 microg/day) in the amygdala only resulted in a slight and transient delay of amygdala kindling. Conversely to the protective effects of exogenous brain-derived neurotrophic factor, chronic hippocampal infusion of antisense oligodeoxynucleotides (12 nmol/day), resulting in reduced expression of endogenous brain-derived neurotrophic factor in the hippocampus, aggravated seizures during hippocampal kindling. Taken together, our results lead us to suggest that the seizure-induced increase in brain-derived neurotrophic factor expression in the hippocampus may constitute an endogenous regulatory mechanism able to restrain hippocampal epileptogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0306-4522(00)00351-1 | DOI Listing |
Biol Res Nurs
January 2025
Cognitive Neuroscience, Pain and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, Spain.
This cross-sectional study compared plasma brain-derived neurotrophic factor (BDNF) levels among chronic primary musculoskeletal pain patients, chronic widespread pain patients, and asymptomatic controls. The study included 126 participants aged 18-65, divided into three groups of 42 each. Pain intensity was assessed using a Numeric Rating Scale (NRS), and plasma BDNF levels were measured via ELISA.
View Article and Find Full Text PDFBrain Behav
January 2025
Biggs Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.
Background: This systematic review and meta-analysis evaluates peripheral and CNS BDNF levels in glioma patients.
Methods: Following PRISMA guidelines, we systematically searched databases for studies measuring BDNF in glioma patients and controls. After screening and data extraction, we conducted quality assessment, meta-analysis, and meta-regression.
Prog Neuropsychopharmacol Biol Psychiatry
January 2025
Department of Psychiatry, University Medical Center Groningen, Groningen, the Netherlands.
Psilocybin represents a novel therapeutic approach for individuals with major depressive disorder (MDD) who do not respond to conventional antidepressant treatment. Investigating the influence of psilocybin on the pathophysiological processes involved in MDD could enhance our neurobiological understanding of the presumed antidepressant action mechanism. This systematic review aims to summarize the results of human studies investigating changes in blood-based biomarkers of MDD to guide future research on potentially relevant analytes that could be monitored in clinical trials.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA.
Background: Disrupted sleep patterns have been shown to exacerbate Alzheimer's disease (AD) risk, potentially because of sleep's role in memory consolidation and synaptic plasticity. Recent evidence highlights that high brain-derived neurotrophic factor (BDNF) levels, a protein enabling neuroplasticity and memory functions, could play a protective role in age related cognitive impairment. We examined the association between total sleep time and cognition, and BDNF levels as a potential modifier.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Geriatric Research Education and Clinical Center William S. Middleton VA Hospital, Madison, WI, USA.
Background: Brain-derived neurotrophic factor (BDNF)-a key neurotrophin involved in synaptic plasticity, neurogenesis, and neuroprotection-has been shown to mediate sex differences in verbal learning and memory (VLM) ability, but it remains unclear whether this relationship is conditionally dependent upon carriage of the Val66Met polymorphism in the BDNF gene. This study investigates how BDNF carriage influences the mediation of sex differences in VLM scores by plasma BDNF levels in a cohort enriched for AD risk.
Method: Cognitively unimpaired participants in the Wisconsin Registry for Alzheimer's Prevention (WRAP; n=198, age 63.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!