The ubiquitin protein ligase SCF(Skp2) is composed of Skp1, Cul1, Roc1/Rbx1 and the F-box protein Skp2, the substrate-recognition subunit. Levels of Skp2 decrease as cells exit the cell cycle and increase as cells re-enter the cycle. Ectopic expression of Skp2 in quiescent fibroblasts causes mitogen-independent S-phase entry. Hence, mechanisms must exist for limiting Skp2 protein expression during the G(0)/G(1) phases. Here we show that Skp2 is degraded by the proteasome in G(0)/G(1) and is stabilized when cells re-enter the cell cycle. Rapid degradation of Skp2 in quiescent cells depends on Skp2 sequences that contribute to Cul1 binding and interference with endogenous Cul1 function in serum-deprived cells induces Skp2 expression. Furthermore, recombinant Cul1-Roc1/Rbx1-Skp1 complexes can catalyse Skp2 ubiquitylation in vitro. These results suggest that degradation of Skp2 in G(0)/G(1) is mediated, at least in part, by an autocatalytic mechanism involving a Skp2-bound Cul1-based core ubiquitin ligase and imply a role for this mechanism in the suppression of SCF(Skp2) ubiquitin protein ligase function during the G(0)/G(1) phases of the cell cycle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC314004PMC
http://dx.doi.org/10.1093/emboj/19.20.5362DOI Listing

Publication Analysis

Top Keywords

skp2
12
cell cycle
12
f-box protein
8
protein skp2
8
skp2 ubiquitylation
8
cul1-based core
8
core ubiquitin
8
ubiquitin ligase
8
skp2 expression
8
quiescent fibroblasts
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!