Objectives: The loss of the neurons in layer 3, one of the groups of cortical neurons most vulnerable in various degenerative brain diseases, results in axonal degeneration leading to atrophy of the corpus callosum. Previous studies showed callosal atrophy in three degenerative dementias: frontotemporal dementia (FTD), progressive supranuclear palsy (PSP), and Alzheimer's disease (AD). However, it is unclear whether a characteristic pattern of atrophy is present in each. The objective of this study was to investigate whether the pattern of the callosal atrophy was different among patients with FTD, PSP, or early onset AD.
Methods: Eleven patients with FTD, nine patients with PSP, 16 patients with early onset AD, and 23 normal controls, all age and sex matched, were studied using MRI. The ratios of midsagittal corpus callosum areas to the midline internal skull surface area on T1 weighted images were analyzed. The corpus callosum was divided into quarters: the anterior, middle-anterior, middle-posterior, and posterior portions.
Results: Compared with controls, all three patient groups had significantly decreased total callosal/skull area ratio. An analysis of covariance adjusted for the total callosal area/skull area ratio showed that the anterior quarter callosal/skull area ratio in FTD, the middle-anterior quarter area ratio in PSP, and the posterior quarter area ratio in AD were significantly smaller than those in the other three groups.
Conclusion: Although atrophy of the corpus callosum is not specific to any degenerative dementia, the patterns of the atrophy are different among patients with FTD, PSP, or early onset AD. Differential patterns of callosal atrophy might reflect characteristic patterns of neocortical involvement in each degenerative dementia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1763404 | PMC |
http://dx.doi.org/10.1136/jnnp.69.5.623 | DOI Listing |
Alzheimers Dement
December 2024
Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile.
Background: Chronic exposition to stressor factors has been postulated as a cause of structural changes in the brain in the context of dementia. One of these changes can be the fiber integrity loss, that can be measured by diffusion tensor imaging (DTI). We obtained DTI whole brain metrics to relate them with allostatic load in subjects of a chilean cohort of cognitive complaint subjects.
View Article and Find Full Text PDFBackground: Recent research by Da et al. (2023) has demonstrated that non-invasive gamma sensory stimulation can reduce brain white matter atrophy and myelin content loss. The impact on the Corpus Callosum (CC), the brain's largest commissural white matter tract essential for hemispheric connectivity, remains unexplored.
View Article and Find Full Text PDFBackground: Mild Cognitive Impairment (MCI) represents an intermediate stage between normal age-related cognitive decline and more severe degenerative conditions such as Alzheimer's disease. Understanding the differences between Early-MCI (EMCI) and Late-MCI (LMCI) is crucial to facilitate early diagnosis and future clinical interventions. This study employed free-water diffusion tensor imaging (FW-DTI) to explore the differences in white matter alterations between EMCI and LMCI.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Centre for Brain Research (CBR), Indian Institute of Science, Bengaluru, Karnataka, India.
Background: Alzheimer's disease is a progressive neurodegenerative disorder that mainly affects the brain resulting gradual decline in a cognitive function, memory impairment, alterations in behavior, potentially resulting in the inability to engage in a conversation and react to the surroundings. Corpus callosum (CC) is the principal white fabric matter present in the center of the brain that connects the left and right cerebral hemispheres. Neurodegenerative diseases can impact the size and structure of the CC, leading to its atrophy and dysfunction.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
Background: The Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is one of the biggest health concerns of the century. Long COVID is one of the major sequelae from the infection and include persistent neurological manifestations. Brain images study suggest that Long COVID patients present distinct brain metabolic alterations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!