AI Article Synopsis

  • Rit and Rin are Ras-like proteins with unclear biological functions; Rit(79L) showed strong growth transformation in NIH cells, unlike Rin(78L).
  • Rit(79L) cooperates with Raf and Rho A to promote cell growth and transformation, while Rin(78L) mainly works with Raf.
  • Rit activates transcription factors like SRF and NF-kappaB but does not stimulate classic signaling pathways; it relies on a farnesylated protein for growth in low serum, indicating it uses unique pathways distinct from Ras.

Article Abstract

The biological functions of Rit (Ras-like protein in tissues) and Rin (Ras-like protein in neurons), members of a novel branch of Ras-related GTP-binding proteins that are approximately 50% identical to Ras, have not been characterized. Therefore, we assessed their activity in growth control, transformation and signaling. NIH cells stably expressing a constitutively activated mutant of Rit [Rit(79L)] (analogous to the oncogenic mutant H-Ras(61L)) demonstrated strong growth transformation, proliferating rapidly in low serum and forming colonies in soft agar and tumors in nude mice. Although Rit(79L) alone did not promote morphologically transformed foci, it cooperated with both Raf and Rho A to form Rac/Rho-like foci. Rin [Rin(78L)] cooperated only with Raf. Rit(79L) but not Rin(78L) stimulated transcription from luciferase reporter constructs regulated by SRF, NF-kappaB, Elk-1 and Jun. However, neither activated ERK, JNK or p38, or PI3-K/Akt kinases in immune complex kinase assays. Interestingly, although Rit lacks any known recognition signal for C-terminal lipidation, Rit-transformed cell growth and survival in low serum is dependent on a farnesylated protein, as treatment with farnesyltransferase inhibitors caused apoptosis. Rin cooperated with Raf in focus assays but did not otherwise function in these assays, perhaps due to a lack of appropriate effector pathways in NIH3T3 fibroblasts for this neural-specific Ras family member. In summary, although Rit shares most core effector domain residues with Ras, our results suggest that Rit uses novel effector pathways to regulate proliferation and transformation.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1203836DOI Listing

Publication Analysis

Top Keywords

cooperated raf
12
erk jnk
8
jnk p38
8
ras-like protein
8
low serum
8
effector pathways
8
rit
6
rit non-lipid-modified
4
non-lipid-modified ras-related
4
protein
4

Similar Publications

Colorectal cancer (CRC) patients with microsatellite-stable (MSS) tumors are mostly treated with chemotherapy. Clinical benefits of targeted therapies depend on mutational states and tumor location. Many tumors carry mutations in KRAS proto-oncogene, GTPase (KRAS) or B-Raf proto-oncogene, serine/threonine kinase (BRAF), rendering them more resistant to therapies.

View Article and Find Full Text PDF

HDAC and MEK inhibition synergistically suppresses HOXC6 and enhances PD-1 blockade efficacy in BRAF-mutant microsatellite stable colorectal cancer.

J Immunother Cancer

January 2025

Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China

Background: B-Raf proto-oncogene, serine/threonine kinase (BRAF)-mutant microsatellite stable (MSS) colorectal cancer (CRC) constitutes a distinct CRC subgroup, traditionally perceived as minimally responsive to standard therapies. Recent clinical attempts, such as BRAF inhibitors (BRAFi) monotherapy and combining BRAFi with other inhibitors, have yielded unsatisfactory efficacy. This study aims to identify a novel therapeutic strategy for this challenging subgroup.

View Article and Find Full Text PDF

[Correlation of Mutation with Clinical Features and Prognosis of Langerhans Cell Histiocytosis in Cildren].

Zhongguo Shi Yan Xue Ye Xue Za Zhi

December 2024

Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.

Objective: To explore the gene mutations of Langerhans cell histiocytosis in children, and to analyze the correlation of mutation with clinical features and prognosis of LCH, so as to provide reference for clinical diagnosis and treatment.

Methods: Fluorescence PCR was used to detect gene mutations in paraffin-embedded tissue samples from 78 children with LCH, and the correlation of mutation with clinical characteristics and prognosis of LCH in children was analyzed.

Results: Among the 78 children, 41 cases (52.

View Article and Find Full Text PDF

A patent review of small molecular inhibitors targeting EGFR exon 20 insertion (Ex20ins) (2019-present).

Expert Opin Ther Pat

December 2024

State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China.

Introduction: Mutations in epidermal growth factor receptor (EGFR) kinase domain consistently activate downstream signaling pathways, such as the PI3K/AKT/mTOR and RAS/RAF/MEK, thereby promoting tumor growth. Although the majority of non-small cell lung cancer (NSCLC) patients harboring EGFR mutations are sensitive to existing EGFR tyrosine kinase inhibitors (EGFR-TKIs), there remains an unmet clinical need for effective therapies targeting EGFR Ex20ins mutations, making direct targeting EGFR Ex20ins mutations a promising therapeutic strategy.

Areas Covered: This review covers the progress of clinical studies targeting EGFR Ex20ins inhibitors and summarizes recent (1 January 2019 - 30 April 2024) patents disclosing EGFR Ex20ins inhibitors available in the Espacenet and CAS SciFinder databases.

View Article and Find Full Text PDF

Background: Due to their anatomical locations, optic pathway gliomas (OPGs) can rarely be cured by resection. Given the importance of preserving visual function, we analyzed radiological and visual acuity (VA) outcomes for the type II RAF inhibitor tovorafenib in the OPG subgroup of the phase 2 FIREFLY-1 trial.

Methods: FIREFLY-1 investigated the efficacy (arm 1, n=77), safety, and tolerability (arms 1/2) of tovorafenib (420 mg/m2 once weekly; 600 mg maximum) in patients with BRAF-altered relapsed/refractory pediatric low-grade glioma (pLGG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!