Viability of competing field theories for the driven lattice gas.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics

Center for Stochastic Processes in Science and Engineering, Virginia Tech, Blacksburg 24061-0435, USA.

Published: May 2000

It has recently been suggested that the driven lattice gas should be described by an alternate field theory in the limit of infinite drive. We review the original and the alternate field theory, invoking several well-documented key features of the microscopics. Since the alternate field theory fails to reproduce these characteristics, we argue that it cannot serve as a viable description of the driven lattice gas. Recent results, for the critical exponents associated with this theory, are reanalyzed and shown to be incorrect.

Download full-text PDF

Source
http://dx.doi.org/10.1103/physreve.61.5977DOI Listing

Publication Analysis

Top Keywords

driven lattice
12
lattice gas
12
alternate field
12
field theory
12
viability competing
4
field
4
competing field
4
field theories
4
theories driven
4
gas suggested
4

Similar Publications

Photocatalytic asymmetric C-C coupling for CO reduction on dynamically reconstructed Ru-O/Ru-O sites.

Nat Commun

January 2025

Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AB, Canada.

Solar-driven CO reduction to value-added C chemicals is thermodynamically challenging due to multiple complicated steps. The design of active sites and structures for photocatalysts is necessary to improve solar energy efficiency. In this work, atomically dispersed Ru-O sites in RuInO are constructed by interior lattice anchoring of Ru.

View Article and Find Full Text PDF

This study investigates the influence of prolonged electrolysis on the electrochemical performance and surface characteristics of NiFe-modified compressed graphite electrodes used in alkaline water electrolysis. The electrochemical experiment was conducted over a two-week period at a constant temperature of 60 °C. The electrodes were evaluated for changes in surface morphology and composition using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD).

View Article and Find Full Text PDF

Scalable InGaN nanowire µ-LEDs: paving the way for next-generation display technology.

Natl Sci Rev

January 2025

Division of Advanced Materials Engineering, College of Engineering, Research Center for Advanced Materials Development (RCAMD), Jeonbuk National University (JBNU), Jeonju 54896, South Korea.

Ever-increasing demand for efficient optoelectronic devices with a small-footprinted on-chip light emitting diode has driven their expansion in self-emissive displays, from micro-electronic displays to large video walls. InGaN nanowires, with features like high electron mobility, tunable emission wavelengths, durability under high current densities, compact size, self-emission, long lifespan, low-power consumption, fast response, and impressive brightness, are emerging as the choice of micro-light emitting diodes (µLEDs). However, challenges persist in achieving high crystal quality and lattice-matching heterostructures due to composition tuning and bandgap issues on substrates with differing crystal structures and high lattice mismatches.

View Article and Find Full Text PDF

The reduced dimensionality of thin transition metal dihalide films on single-crystal surfaces unlocks a diverse range of magnetic and electronic properties. However, achieving stoichiometric monolayer islands requires precise control over the growth conditions. In this study, we employ scanning probe microscopy to investigate the growth of MnI on Ag(111) via single-crucible evaporation.

View Article and Find Full Text PDF
Article Synopsis
  • All-solid-state lithium metal batteries are promising for high energy density and safety, but issues like voids at the anode/electrolyte interface during lithium stripping can hurt stability.
  • Stack pressure and operating temperature can induce creep deformation in lithium metal, potentially improving interfacial issues caused by these voids, although understanding of these effects is still lacking.
  • A new coupled model (EDMP-VE) has been developed to study the influence of pressure and temperature on void evolution, showing that higher conditions can enhance void healing and stabilize interfaces by reducing void expansion and promoting filling.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!