Evidence that PAR-1 and PAR-2 mediate prostanoid-dependent contraction in isolated guinea-pig gallbladder.

Br J Pharmacol

Department of Experimental & Clinical Medicine, Pharmacology Unit, University of Ferrara, Via Fossato di Mortara 19, 44100 Ferrara, Italy.

Published: October 2000

We have investigated the ability of protease-activated receptor-1 (PAR-1), PAR-2, PAR-3 and PAR-4 agonists to induce contractile responses in isolated guinea-pig gallbladder. Thrombin, trypsin, mouse PAR-1 activating (SFLLRN-NH(2)) peptide, and mouse PAR-2 activating (SLIGRL-NH(2)) and human PAR-2 activating (SLIGKV-NH(2)) peptides produced a concentration-dependent contractile response. Mouse PAR-4 activating (GYPGKF-NH(2)) peptide, the mouse PAR-1 reverse (NRLLFS-NH(2)) peptide, the mouse PAR-2 reverse (LRGILS-NH(2)) and human PAR-2 reverse (VKGILS-NH(2)) peptides caused negligible contractile responses at the highest concentrations tested. An additive effect was observed following the contractile response induced by either trypsin or thrombin, with the addition of a different PAR agonist (SFLLRN-NH(2) and SLIGRL-NH(2), respectively). Desensitization to PAR-2 activating peptide attenuated the response to trypsin but failed to attenuate the response to PAR-1 agonists, and conversely desensitization to PAR-1 attenuated the response to thrombin but failed to alter contractile responses to PAR-2 agonists. The contractile responses produced by thrombin, trypsin, SFLLRN-NH(2) and SLIGRL-NH(2) were markedly reduced in the presence of the cyclo-oxygenase inhibitor, indomethacin, whilst the small contractile response produced by NRLLFS-NH(2) and LRGILS-NH(2) were insensitive to indomethacin. The contractile responses to thrombin, trypsin, SFLLRN-NH(2) and SLIGRL-NH(2) were unaffected by the presence of: the non-selective muscarinic antagonist, atropine; the nitric oxide synthase inhibitor, L-NAME; the sodium channel blocker, tetrodotoxin; the combination of selective tachykinin NK(1) and NK(2) receptor antagonists, (S)-1-[2-[3-(3,4-dichlorphenyl)-1 (3-isopropoxyphenylacetyl) piperidin-3-yl] ethyl]-4-phenyl-1 azaniabicyclo [2.2.2] octane chloride (SR140333) and (S)-N-methyl-N-[4-acetylamino-4-phenylpiperidino-2-(3, 4-dichlorophenyl)-butyl] benzamide (SR48968), respectively. The results indicate that PAR-1 and PAR-2 activation causes contractile responses in the guinea-pig gallbladder, an effect that is mediated principally by prostanoid release, and is independent of neural mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1572377PMC
http://dx.doi.org/10.1038/sj.bjp.0703618DOI Listing

Publication Analysis

Top Keywords

contractile responses
24
par-1 par-2
12
guinea-pig gallbladder
12
thrombin trypsin
12
peptide mouse
12
par-2 activating
12
contractile response
12
sfllrn-nh2 sligrl-nh2
12
par-2
9
contractile
9

Similar Publications

Neuroendocrine cells react to physical, chemical, and synaptic signals originating from tissues and the nervous system, releasing hormones that regulate various body functions beyond the synapse. Neuroendocrine cells are often embedded in complex tissues making direct tests of their activation mechanisms and signaling effects difficult to study. In the nematode worm , four uterine-vulval (uv1) neuroendocrine cells sit above the vulval canal next to the egg-laying circuit, releasing tyramine and neuropeptides that feedback to inhibit egg laying.

View Article and Find Full Text PDF

Effect of fatigue on neuromuscular and biomechanical variables after anterior cruciate ligament reconstruction: a systematic review.

J Sports Med Phys Fitness

January 2025

Department of Health and Corrective Exercise, School of Physical Education and Sport Sciences, Shahrood University of Technology, Shahrood, Semnan, Iran.

Introduction: This systematic review is aimed to evaluate the outcomes of published studies on the topic of fatigue-induced neuromuscular and biomechanical changes after anterior cruciate ligament (ACL) reconstruction.

Evidence Acquisition: The identification of studies involved a search across three databases - PubMed, Scopus, and Sportdiscus - until July 2023. The key terms utilized were fatigue, anterior cruciate ligament, biomechanics, electromyography, and landing.

View Article and Find Full Text PDF

Ultrasonographic evaluation of diaphragm fatigue in healthy humans.

Exp Physiol

January 2025

Division of Sport, Health and Exercise Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK.

Assessment of diaphragm function and fatigue typically relies on the measurement of transdiaphragmatic pressure (P). Although P serves as an index of diaphragm force output, it provides limited information regarding the ability of the muscle to shorten and generate power. We asked whether ultrasonography, combined with P, could be used to quantify changes in diaphragm function attributable to fatigue.

View Article and Find Full Text PDF

Background: Androgen deprivation is associated with erectile dysfunction (ED). In different animal models, sulfur dioxide (SO) donors NaSO and NaHSO reduced oxidative stress, fibrosis, and inflammation which contribute to the pathogenesis of androgen deprivation-induced ED, however the effect of SO donors on ED in castrated rats were not known.

Objective: To investigate the therapeutic effect of SO donors, NaSO/NaHSO, on ED in castrated rat model.

View Article and Find Full Text PDF

Programmable embedded bioprinting for one-step manufacturing of arterial models with customized contractile and metabolic functions.

Trends Biotechnol

January 2025

State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China. Electronic address:

Replicating the contractile function of arterial tissues in vitro requires precise control of cell alignment within 3D structures, a challenge that existing bioprinting techniques struggle to meet. In this study, we introduce the voxel-based embedded construction for tailored orientational replication (VECTOR) method, a voxel-based approach that controls cellular orientation and collective behavior within bioprinted filaments. By fine-tuning voxel vector magnitude and using an omnidirectional printing trajectory, we achieve structural mimicry at both the macroscale and the cellular alignment level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!