The cleavage of the amyloid precursor protein (APP) into amyloidogenic components (Abeta) is a central event in the pathogenesis of Alzheimer's disease (AD). FE65 is a protein that is involved in APP metabolism and may facilitate the production of Abeta. Recently, an intronic polymorphism of the gene encoding FE65 (FE65) was associated with altered risk for the development of sporadic AD. In our sample of 102 AD patients and 351 non-demented controls we did not replicate the association between FE65 and AD. Moreover, we observed no risk-modifying interaction and no linkage disequilibrium between FE65 and the gene encoding the acid protease cathepsin D (catD), which - like FE65 - is involved in APP metabolism and is also located on chromosome 11p15. We conclude that, whereas FE65 is implicated in AD pathology, the gene encoding FE65 does not appear to confer a substantial risk for AD.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijmm.6.5.587DOI Listing

Publication Analysis

Top Keywords

gene encoding
12
fe65
9
fe65 gene
8
alzheimer's disease
8
involved app
8
app metabolism
8
encoding fe65
8
association intronic
4
intronic biallelic
4
biallelic polymorphism
4

Similar Publications

Foliar-applied Zn on Catharanthus roseus enhanced production of vindoline, the main impediment precursor for costly anticancer bisindoles. A leaf-abundant CrZIP was characterized for likely role in modulating vindoline metabolism. The leaf-localized Catharanthus roseus alkaloid, vindoline, is the major impediment precursor in the production of scanty and expensive anticancer bisindoles, vinblastine and vincristine.

View Article and Find Full Text PDF

Genetic evidence for functions of Chloroplast CA in Pyropia yezoensis: decreased CCM but increased starch accumulation.

Adv Biotechnol (Singap)

April 2024

CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.

In response to the changing intertidal environment, intertidal macroalgae have evolved complicated Ci utilization mechanisms. However, our knowledge regarding the CO concentrating mechanism (CCM) of macroalgae is limited. Carbonic anhydrase (CA), a key component of CCM, plays essential roles in many physiological reactions in various organisms.

View Article and Find Full Text PDF

Distribution analysis of RAB11A and RAB11B, small GTP-binding proteins, in mice.

Mol Biol Rep

January 2025

Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, 486-0392, Japan.

Background: RAB11 is a small GTP-binding protein that regulates intracellular trafficking of recycling endosomes and is thereby involved in several neural functions. Highly similar RAB11 isoforms are encoded by RAB11A and RAB11B genes, and their pathogenic variants are associated with similar neurodevelopmental disorders, suggesting that RAB11A and RAB11B play similar and important roles in brain development. However, the detailed distribution patterns of these isoforms in various organs, including the brain, remain undetermined.

View Article and Find Full Text PDF

Cdr1 in focus: a personal reflection on multidrug transporter research.

FEMS Yeast Res

January 2025

Amity Institute of Integrative Science and Health, Amity University Haryana, Gurugram, 122413, India.

Drug resistance mechanisms in human pathogenic Candida species are constantly evolving. Over time, these species have developed diverse strategies to counter the effects of various drug classes, making them a significant threat to human health. In addition to well-known mechanisms such as drug target modification, overexpression, and chromosome duplication, Candida species have also developed permeability barriers to antifungal drugs through reduced drug import or increased efflux.

View Article and Find Full Text PDF

A plasmid with the gene enhances the fitness of strains under laboratory conditions.

Microbiology (Reading)

January 2025

Instituto de Microbiologa, Colegio de Ciencias Biolgicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.

Antimicrobial resistance (AMR) is a major threat to global public health that continues to grow owing to selective pressure caused by the use and overuse of antimicrobial drugs. Resistance spread by plasmids is of special concern, as they can mediate a wide distribution of AMR genes, including those encoding extended-spectrum -lactamases (ESBLs). The CTX-M family of ESBLs has rapidly spread worldwide, playing a large role in the declining effectiveness of third-generation cephalosporins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!