Distinct mechanisms of action of selective estrogen receptor modulators in breast and osteoblastic cells.

Am J Physiol Cell Physiol

Department of Bone and Cartilage Biology, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA.

Published: November 2000

Raloxifene and idoxifene are selective estrogen receptor modulators (SERMs) that exhibit tissue-specific agonist or antagonist properties via interactions with the estrogen receptor (ER). Both compounds are similarly osteoprotective in the ovariectomized rat in vivo as assessed by measurement of bone mineral density, urinary pyridinium cross-links, and serum osteocalcin, suggesting a similar mechanism of action. However, we have identified a fundamental difference in this mechanism via the estrogen response element (ERE) in osteoblast-like cells. With the use of ERE-luciferase reporter constructs, raloxifene, like the complete ER-antagonist ICI-182780, acts as an antagonist via the ERE in osteoblastic cells. In contrast, idoxifene, like 17beta-estrogen itself and 4-OH-tamoxifen, acts as an agonist in osteoblastic cells via an ER/ERE-mediated mechanism. Both ICI-182780 and raloxifene inhibited the ERE-dependent agonist activity of 17beta-estradiol and idoxifene in osteoblastic cells. In contrast, in breast cells, raloxifene, idoxifene, 4-OH-tamoxifen, and ICI-182780 had no agonist activity and, indeed, raloxifene and idoxifene were potent antagonists of ERE-mediated 17beta-estradiol action, indicating an ERE-dependent mode of action in these cells. Although these SERMs exhibit a similar antagonist activity profile in breast cells, they can be distinguished mechanistically in osteoblastic cells.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.2000.279.5.C1550DOI Listing

Publication Analysis

Top Keywords

osteoblastic cells
20
estrogen receptor
12
raloxifene idoxifene
12
cells
9
selective estrogen
8
receptor modulators
8
cells raloxifene
8
serms exhibit
8
cells contrast
8
agonist activity
8

Similar Publications

Effects of Chemical Pretreatments of Wood Cellulose Nanofibrils on Protein Adsorption and Biological Outcomes.

ACS Appl Mater Interfaces

January 2025

Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway.

Wood-based nanocellulose is emerging as a promising nanomaterial in the field of tissue engineering due to its unique properties and versatile applications. Previously, we used TEMPO-mediated oxidation (TO) and carboxymethylation (CM) as chemical pretreatments prior to mechanical fibrillation of wood-based cellulose nanofibrils (CNFs) to produce scaffolds with different surface chemistries. The aim of the current study was to evaluate the effects of these chemical pretreatments on serum protein adsorption on 2D and 3D configurations of TO-CNF and CM-CNF and then to investigate their effects on cell adhesion, spreading, inflammatory mediator production , and the development of foreign body reaction (FBR) .

View Article and Find Full Text PDF

Glycosaminoglycans (GAGs) are essential bone extracellular matrix molecules that regulate osteoblast differentiation. Numerous studies have explored endogenous and exogenous GAG osteoanabolic activities using appropriate in vitro and in vivo models. However, GAGs' underlying the mechanism of action and structure-function relationships need to be elucidated in detail.

View Article and Find Full Text PDF

A BMP-2 sustained-release scaffold accelerated bone regeneration in rats via the BMP-2 consistent activation maintained by a non-sulfate polysaccharide.

Biomed Mater

January 2025

School of Food Science and Technology, Dalian Polytechnic University, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China.

Bone morphogenetic protein 2 (BMP-2) and a polysaccharide (SUP) were embedded in the calcium phosphate cement (CPC) scaffold, and the bone repair ability was evaluated. The new scaffolds were characterized using x-ray diffraction, Fourier transform-infrared, scanning electron microscopy, and energy dispersive spectroscopy analyses. CPC-BMP2-SUPH scaffold promoted the BMP-2 release by 1.

View Article and Find Full Text PDF

Nuclear factor I-C regulates intramembranous bone formation via control of FGF signalling.

Heliyon

January 2025

Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.

Our previous studies indicate that NFI-C is essential for tooth root development and endochondral ossification. However, its exact role in calvarial intramembranous bone formation remains unclear. In this study, we demonstrate that the disruption of the gene leads to defects in intramembranous bone formation, characterized by decreased osteogenic proliferative activity and reduced osteoblast differentiation during postnatal osteogenesis.

View Article and Find Full Text PDF

3D-Printed PCL/SrHA@DFO Bone Tissue Engineering Scaffold with Bone Regeneration and Vascularization Function.

ACS Appl Bio Mater

January 2025

School of Materials Science and Physics, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China.

The application of a three-dimensional (3D)-printed biological functional scaffold in the repair of bone defects is a promising strategy. In this study, strontium-containing hydroxyapatite (SrHA) powder was synthesized by the hydrothermal method, and then poly(ε-caprolactone) (PCL)/HA and PCL/SrHA composite scaffolds were prepared by the high-temperature melt extrusion 3D printing technology. The basic physical and chemical properties, in vitro biological properties, osteogenesis, and angiogenesis abilities of the scaffold were studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!