A haploid strain of Asp. nidulans with a chromosome segment in duplicate (one in normal position on chromosome I, one translocated to chromosome II) shows mitotic recombination, mostly by conversion, in adE in a frequency slightly higher than in the equivalent diploid. A method has been devised, using this duplication, for the selection of rec and uvs mutations. Six rec mutations have been found which decrease recombination frequency in the haploid. One mutation selected as UV sensitive showed a hundred fold increase in recombination frequency in the haploid (pop mutation) and probably the same in diploids. The increased frequency is both in gene conversion and in crossing over, and the exchanges appear in clusters of two or more. pop is allelic to uvsB (Jansen, 1970) which had been found to affect mitotic but not meiotic recombination. It is suggested that mutations of this type interfere with the control mechanism which determines that high recombination is confirmed to the meiotic nuclei and avoided in somatic nuclei.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00341677DOI Listing

Publication Analysis

Top Keywords

recombination frequency
12
mitotic recombination
8
frequency haploid
8
recombination
6
frequency
5
mutations
4
mutations mitotic
4
frequency haploids
4
haploids diploids
4
diploids filamentous
4

Similar Publications

Background: Antiretroviral treatment increases the risk of accumulation of resistance mutations that negatively impact the possibilities of future treatment. This study aimed to present the frequency of HIV-1 antiretroviral resistance mutations and the genetic diversity among children with virological failure in five pediatric care facilities in Benin.

Methods: A cross-sectional study was carried out from November 20, 2020, to November 30, 2022, in children under 15 years of age who failed ongoing antiretroviral treatment at five facilities care in Benin (VL > 3log10 on two consecutive realizations three months apart).

View Article and Find Full Text PDF

Average nucleotide identity (ANI) is a widely used metric to estimate genetic relatedness, especially in microbial species delineation. While ANI calculation has been well optimized for bacteria and closely related viral genomes, accurate estimation of ANI below 80%, particularly in large reference data sets, has been challenging due to a lack of accurate and scalable methods. To bridge this gap, we introduce MANIAC, an efficient computational pipeline optimized for estimating ANI and alignment fraction (AF) in viral genomes with divergence around ANI of 70%.

View Article and Find Full Text PDF

We theoretically study high-order harmonic generation (HHG) involving an extreme ultraviolet (XUV) pulse and an intense infrared driving field, where the electron is ionized by absorbing a single XUV photon. Using a developed classical-trajectory model that includes Coulomb effects and the improved initial conditions, it is demonstrated that the resulting harmonic emission times match well with those obtained by applying the Gabor transform to data from numerical solutions of time-dependent Schrödinger equations for helium and hydrogen atoms. This confirms a classical HHG scheme under single-photon ionization: The electron, ionized by absorbing one XUV photon, oscillates in the infrared field and may recollide with the parent ion, emitting high-frequency radiation.

View Article and Find Full Text PDF

We report on the design of an all-mirror wavefront-division interferometer capable of spectroscopic studies across multiple spectral ranges-from the plasma frequencies of metals to terahertz wavelengths and beyond. The proposed method leverages the properties of laser sources with high spatial coherence. A theoretical framework for the interferometer scheme is presented, along with an analytical solution for determining the far-field interference pattern, which is validated through both optical propagation simulations and experimental results.

View Article and Find Full Text PDF

Introduction: Molecular surveillance is an important tool for detecting chains of transmission and controlling the HIV epidemic. This can also improve our knowledge of molecular and epidemiological factors for the optimization of prevention. Our objective was to illustrate this by studying the molecular and epidemiological evolution of the cluster including the new circulating recombinant form (CRF) 94_cpx of HIV-1, detected in 2017 and targeted by preventive actions in 2018.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!