Treatment of human colorectal cancer cells HT29 with interleukin 1beta (IL-1beta) induces expression of the multidrug resistance protein (MRP1) gene encoding the ATP-dependent glutathione S-conjugate export (GS-X) pump and the gamma-glutamylcysteine synthetase (gamma-GCSh) gene encoding heavy (catalytic) subunit of gamma-glutamylcysteine synthetase, the rate-limiting enzyme for the biosynthesis of glutathione (GSH). The induction can be suppressed by N(G)-methyl-L-arginine, a specific inhibitor of nitric oxide synthase (NOS). These results suggest that IL-1beta-mediated MRP1 and gamma-GCSh induction involve nitric oxide (NO) -related signaling. Further supports to the involvement of NO in the induction of MRP1 and gamma-GCSh expression are made by the following observations. (i) Expression of MRP1 and gamma-GCSh genes were induced by treating the cells with NO donors, i.e., S-nitro-N-acetyl-D,L-penicillamide (SNAP) and S-nitroso-L-glutathione, in a concentration-dependent manner. (ii) Ectopic expression of inducible NOS (iNOS) activity by transfecting expressible recombinant iNOS cDNA encoding functional iNOS but not the nonfunctional version resulted in elevated expression of MRP1 and gamma-GCSh. We also demonstrated that HT-29 cells treated with either 1L-1beta or SNAP induced ceramide production, and addition of C2 or C6 ceramides into cultured HT-29 cells resulted in induction of gamma-GCSh but not MRP1 expression. Collectively, our results demonstrate that induction of MRP1 and gamma-GCSh by IL-1beta is regulated, at least in part, by an NO-related signaling, and induction of gamma-GCSh is by NO-related ceramide signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1097-4652(200011)185:2<293::AID-JCP14>3.0.CO;2-C | DOI Listing |
J Exp Ther Oncol
January 2008
Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-60 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
Nrf2, an NF-E2-related transcription factor, plays a critical role in transcriptional upregulation of many target genes, including those for metabolizing enzymes and transporters essential for cellular defense in response to oxidative and/or electrophilic stress. In the present study, we have studied the potential involvement of Nrf2 in induction of human ABC transporter genes under oxidative stress. We created a real-time PCR primer set to quantitatively investigate the induction of human ABC transporters by a redox-active compound tert-butylhydroquinone (tBHQ) in HepG2 cells.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2002
Department of Molecular Pathology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
Nonsteroidal anti-inflammatory drugs (NSAIDs) have been demonstrated to suppress colorectal tumorigenesis. NSAIDs have also been used to treat inflammatory illnesses. However, the underlying mechanisms of action by NSAIDs have not been completely elucidated.
View Article and Find Full Text PDFInt J Cancer
January 2002
Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
Gamma-glutamylcysteine synthetase (gamma-GCS) is a heterodimer consisting of heavy (gamma-GCSh) and light (gamma-GCSl) subunits. gamma-GCS catalyzes the rate-limiting de novo biosynthesis of glutathione (GSH), an abundant physiological antioxidant that plays important roles for regulating oxidative stress. Expression of gamma-GCSh and gamma-GCSl are sensitive to oxidative stress.
View Article and Find Full Text PDFCancer Gene Ther
October 2001
Department of Biochemistry and Molecular Biology in Disease, Atomic Bomb Disease Institute, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan.
Multidrug resistance in cancer cells is often associated with an elevation in the concentration of glutathione (GSH) and the expression of gamma-glutamylcysteine synthetase (gamma-GCS), a rate-limiting enzyme for GSH. We constructed a hammerhead ribozyme against a gamma-GCS heavy subunit (gamma-GCSh) mRNA transcript and transfected it to human colonic cancer cells (HCT8DDP) resistant to cisplatin (CDDP). The effect of the ribozyme transfection on the drug resistance of cancer cells was studied.
View Article and Find Full Text PDFBiochem Pharmacol
March 2001
Department of Molecular Pathology (Box 89), The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
1Recent molecular cloning studies have identified six members in the multidrug-resistance protein (MRP) gene family. However, the regulation of expression of these genes is largely unknown. We previously reported that expression of MRP1, encoding multidrug-resistance associated protein, and gamma-GCSh, which encodes the heavy subunit of gamma-glutamylcysteine synthetase (gamma-GCS), could be up-regulated by prooxidants [Yamane et al.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!