The processing of the genetic information stored in the double-helical DNA implies the separation of the two strands, the physics of which is described by the helix-coil transition model. Is there a relationship between genetic maps and DNA physical stability maps that plot the sequence-specific propensity for the thermal disruption of the double-helix? Here, with appropriate methodological formulations, such maps are derived for a large set of sequences, including complete genomes. The superposition of the two maps leads to a contrasted picture with correlations ranging between two extremes: from almost perfect (with the genes precisely delineated as stable regions) to more or less complete unrelatedness. The simplest explanation for the results is that the observed striking correlations correspond to the relics of a primeval organisation of the genetic message, with the physics of DNA playing a role in the delimitation of coding regions. In order to trace the evolutionary fate of this signal further, a detailed study of the yeast complete genome is performed. In this study, the superposition of the genetic and physical stability maps is examined in the light of information concerning gene duplication. On the basis of this analysis it is concluded that the 'signature' associated with the supposed archaic signal is in the process of being erased, most probably because the underlying feature is no longer under selective pressure. There are many evolutionary implications for the results presented and for their proposed interpretations, notably concerning models of mutational dynamics in relation to erasure processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-1119(00)00301-2 | DOI Listing |
Anal Bioanal Chem
January 2025
Statistical Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899-8980, USA.
Closely related species of Salmonidae, including Pacific and Atlantic salmon, can be distinguished from one another based on nucleotide sequences from the cytochrome c oxidase sub-unit 1 mitochondrial gene (COI), using ensembles of fragments aligned to genetic barcodes that serve as digital proxies for the relevant species. This is accomplished by exploiting both the nucleotide sequences and their quality scores recorded in a FASTQ file obtained via Next Generation (NextGen) Sequencing of mitochondrial DNA extracted from Coho salmon caught with hook and line in the Gulf of Alaska. The alignment is done using MUSCLE (Muscle 5.
View Article and Find Full Text PDFNPJ Precis Oncol
January 2025
Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Pancreatic ductal adenocarcinoma (PDAC) is notably resistant to conventional chemotherapy and radiation treatment. However, clinical trials indicate that carbon ion radiotherapy (CIRT) with concurrent gemcitabine is effective for unresectable locally advanced PDAC. This study aimed to identify patient characteristics predictive of CIRT response.
View Article and Find Full Text PDFSci Rep
January 2025
Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands.
Bladder cancer often recurs, necessitating innovative treatments to reduce recurrence. We investigated non-thermal plasma's potential as a novel anti-cancer therapy, focusing on plasma-activated solution (PAS), created by exposing saline to non-thermal plasma. Our study aims to elucidate the biological effects of PAS on bladder cancer cell lines in vitro, as well as the combination with mitomycin C (MMC), using clinically relevant settings.
View Article and Find Full Text PDFAdv Mater
January 2025
Third Institute of Physics - Biophysics, Georg August University, Friedrich-Hund Platz 1, 37077, Göttingen, Germany.
In the burgeoning field of super-resolution fluorescence microscopy, significant efforts are being dedicated to expanding its applications into the 3D domain. Various methodologies have been developed that enable isotropic resolution at the nanometer scale, facilitating the visualization of 3D subcellular structures with unprecedented clarity. Central to this progress is the need for reliable 3D structures that are biologically compatible for validating resolution capabilities.
View Article and Find Full Text PDFSci Rep
January 2025
Molecular Modeling and Simulation Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba City, Chiba, 263-8555, Japan.
Sequence-dependent mechanical properties of DNA could play essential roles in nuclear processes by affecting histone-DNA interactions. Previously, we found that the DNA entry site of the first nucleosomes from the transcription start site (+ 1 nucleosome) in budding yeast enriches AA/TT steps, but not the exit site, and the biased presence of AA/TT in the entry site was associated with the transcription levels of yeast genes. Because AA/TT is a rigid dinucleotide step, we considered that AA/TT causes DNA unwrapping.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!