Advanced glycation end products (AGEs) have an important role in diabetic complications, with many responses mediated through AGE-receptors. The current study has investigated the binding and uptake of AGEs by retinal microvascular endothelium in an attempt to understand the nature of AGE-interaction with receptors on the cell surface. There has been special emphasis placed on the R1, R2, and R3 components of AGE-receptor complex (AGE-RC) and their localization to caveolin-rich membrane domains. Retinal microvascular endothelial cells (RMECs) were exposed to either AGE-modified BSA (AGE-BSA) or native BSA conjugated to colloidal gold (gAGE, gBSA) for various time periods, fixed, and processed for transmission electron microscopy (TEM). Localization of AGE-RC components in caveolae was investigated using confocal microscopy and ultrastructural immunogold labeling. Caveolae were extracted from RMECs using differential Triton X-100 solubility, and Western analysis was conducted to test for caveolae enrichment and the presence of AGE-RC complex components. Ligand blots determined 125I-AGE-BSA binding to caveolae-enriched extracts. Colloidal gold conjugates of AGE-BSA bound to caveolae and were internalized to be trafficked to lysosomal-like compartments. AGE-receptor complex components were significantly enriched within caveolae. The data suggest that AGEs interact with their receptors within caveolae. It is significant that the AGE-R complex localizes to these organelles, because this may have implications for AGE binding, internalization, signal transduction, and the modulation of AGE-receptor-mediated vascular cell dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.00-0289fjeDOI Listing

Publication Analysis

Top Keywords

advanced glycation
8
caveolin-rich membrane
8
membrane domains
8
retinal microvascular
8
age-receptor complex
8
colloidal gold
8
complex components
8
caveolae
6
glycation end-product
4
end-product receptor
4

Similar Publications

Pickering Emulsions Stabilized by Pea Protein Isolate-Cellulose Conjugates Prepared via the Maillard Reaction and Their Application in Active Substance Protection.

Langmuir

December 2024

Key Laboratory of Synthetic and Biological Colloids, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.

The development of innovative solid particles from renewable resources possessing high biocompatibility and exceptional emulsification capabilities is crucial for stabilizing Pickering emulsions and advancing carrier systems. In this study, a pea protein isolate (PPI)-cellulose conjugate particle was prepared by the Maillard reaction. Compared to the isoelectric point of pH 4.

View Article and Find Full Text PDF

Assessing metal-induced glycation in French fries.

Metallomics

December 2024

Department of Environmental and Physical Sciences, Faculty of Science.

Non-enzymatic glycation is the chemical reaction between the amine group of an amino acid and the carbonyl group of a reducing sugar. The final products of this reaction, advanced glycation end-products (AGEs), are known to play a key role in aging and many chronic diseases. The kinetics of the AGE formation reaction depends on several factors, including pH, temperature, and the presence of prooxidant metals, such as iron and copper.

View Article and Find Full Text PDF

Background: Intracerebral hemorrhage (ICH) is a severe condition associated with high mortality and disability rates. Oxidative stress plays a critical role in the development of secondary brain injury (SBI) following ICH. Previous research has demonstrated that Annao Pingchong decoction (ANPCD) treatment for ICH has antioxidant effects, but the exact mechanism is not yet fully understood.

View Article and Find Full Text PDF

Background: Acute lung injury (ALI) significantly impacts the survival rates in intensive care units (ICU). Releasing a lot of pro-inflammatory mediators during the progression of the disease is a core feature of ALI, which may lead to uncontrolled inflammation and further damages the tissues and organs of patients. This study explores the potential therapeutic mechanisms of Dexmedetomidine (Dex) in ALI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!