We previously showed that primary rat mammotropes exhibited four distinct patterns of 'spontaneous' free intracellular calcium ([Ca2+]i) oscillatory behavior: a quiescent state A and three oscillatory states B,C&D, which differed in frequency/amplitude characteristics. When [Ca2+]i was monitored in 10 min windows separated by several hours, these phenotypes were frequently found to interconvert, raising the question about whether these transitions were random or ordered events. We reasoned that if such activity were random, then neither episode duration nor transitional probabilities should differ among phenotypes. We tested this logic in the current study by making long-term, continuous measurements of [Ca2+]i in mammotropes microinjected with Fura-2-dextran and identified by their ability to express a prolactin promoter-driven reporter plasmid. We found that transitions occurred in ~25% of cells (n = 36 from 9 independent experiments) once every 1-5 h and demarcated phenotype episodes of different duration (A, 1.04 +/- 0.2 h; B, 1.64 +/- 0.3 h; C, 2.45 +/- 0.62 h; D, 0.90 +/- 0.2 h, mean +/- SEM). Moreover, some transitions occurred more frequently than others and linked specific phenotypes into a common pattern: C to B to A. Our results demonstrate that the seemingly spontaneous nature of [Ca2+]i phenotype transitions are, in fact, ordered and support the view that they comprise a structured 'code' like that proposed to underlie calcium-dependent regulation of exocytosis and gene expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1054/ceca.2000.0147 | DOI Listing |
Nat Nanotechnol
January 2025
State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China.
Interfacial ferroelectricity emerges in non-centrosymmetric heterostructures consisting of non-polar van der Waals (vdW) layers. Ferroelectricity with concomitant Coulomb screening can switch topological currents or superconductivity and simulate synaptic response. So far, it has only been realized in bilayer graphene moiré superlattices, posing stringent requirements to constituent materials and twist angles.
View Article and Find Full Text PDFSci Rep
January 2025
Computational Physics Key Laboratory of Sichuan Province, Yibin University, Yibin, China.
The potential energy curves, dipole moments and transition dipole moments of the 14 Λ-S states and 30 Ω states of TlBr cation were performed using the multi-reference configuration interaction method. The Davidson correction and spin-orbit coupling effects were also considered. The spectroscopic properties and transition properties of TlBr cation were reported at the first time.
View Article and Find Full Text PDFEpidemiol Serv Saude
January 2025
Universidade Federal de São Paulo, Departamento de Medicina Preventiva, São Paulo, SP, Brazil.
Objective: To describe the socioeconomic and demographic characteristics of the trans population in the Baixada Santista region, São Paulo state.
Methods: This was a descriptive study involving adult trans people, selected through convenience sampling in 2023. A quantitative questionnaire was administered and in-depth interviews were conducted, which were analyzed using thematic grouping.
Introduction: Systemic lupus erythematosus (SLE) causes widespread inflammation and damage in affected organs. Severity is determined by the type of organ systems affected and the extent of involvement. SLE occurs in childhood or adulthood and disease severity varies according to age of onset.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry, University of California, Berkeley, CA 94720.
Copper is an essential nutrient for sustaining vital cellular processes spanning respiration, metabolism, and proliferation. However, loss of copper homeostasis, particularly misregulation of loosely bound copper ions which are defined as the labile copper pool, occurs in major diseases such as cancer, where tumor growth and metastasis have a heightened requirement for this metal. To help decipher the role of copper in the etiology of cancer, we report a histochemical activity-based sensing approach that enables systematic, high-throughput profiling of labile copper status across many cell lines in parallel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!