SPECT tracer [(123)I]IBZM has similar affinity to dopamine D2 and D3 receptors.

Synapse

Neurobiology Research Unit 9201, Copenhagen University Hospital, Rigshospitalet, Copenhagen O, Denmark.

Published: December 2000

AI Article Synopsis

Article Abstract

Emission tomography investigations of the pathophysiological involvement of the cerebral dopaminergic transmitter system in the living human brain relies heavily on a careful selection of the most suitable radioligand. In recent years, many clinical studies have employed [(123)I]IBZM in SPECT studies. The aim of the present study was to characterize the binding of IBZM to dopaminergic receptor subtypes as a means of elucidating which receptor subtypes are visualized and examined by [(123)I]IBZM. The affinity of IBZM for each of the major human dopamine receptors (D1, D2(short), D3, D4(4. 2), and D5 receptor) was determined by competitive radioligand binding assay using membranes prepared from clonal cell lines expressing the different subtypes. Radioligands with high affinity for the D1(A) and D5 receptors ([(3)H]SCH-23390), dopamine D2(short) and D4(4.2) receptors ([(3)H]Spiroperidol), and dopamine D3 receptor ([(3)H]7-OH-DPAT) were used to measure specific binding. Corresponding unlabeled displacing ligands for determination of nonspecific binding were employed. Assays were performed at 25 degrees C. These experiments show that for IBZM K(i) values were 1.6 nM for dopamine D2(s) receptors and 2.2 nM for dopamine D3 receptors. There was no binding of IBZM to D1(A), D5, or D4(4.2) receptors. In conclusion, when [(123)I]IBZM is used as SPECT tracer, the studies reflect dopaminergic D2 as well as D3 receptor binding.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1098-2396(20001201)38:3<338::AID-SYN13>3.0.CO;2-NDOI Listing

Publication Analysis

Top Keywords

dopamine receptors
12
spect tracer
8
[123i]ibzm affinity
8
[123i]ibzm spect
8
binding ibzm
8
receptor subtypes
8
d442 receptors
8
receptors
7
dopamine
6
binding
6

Similar Publications

G Protein-Coupled Receptor Heteromers in Brain: Functional and Therapeutic Importance in Neuropsychiatric Disorders.

Annu Rev Pharmacol Toxicol

January 2025

Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; email:

G protein-coupled receptors (GPCRs) represent the largest family of plasma membrane proteins targeted for therapeutic development. For decades, GPCRs were investigated as monomeric entities during analysis of their pharmacology or signaling and during drug development. However, a considerable body of evidence now indicates that GPCRs function as dimers or higher-order oligomers.

View Article and Find Full Text PDF

Dopaminergic modulation of propofol-induced activation in VLPO neurons: the role of D1 receptors in sleep-promoting neural circuits.

Front Neurosci

January 2025

The Key Laboratory of Anesthesia and Organ Protection, The Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China.

Background: The ventrolateral preoptic nucleus (VLPO) is a crucial regulator of sleep, and its neurons are implicated in both sleep-wake regulation and anesthesia-induced loss of consciousness. Propofol (PRO), a widely used intravenous anesthetic, modulates the activity of VLPO neurons, but the underlying mechanisms, particularly the role of dopaminergic receptors, remain unclear.

Objective: This study aimed to investigate the effects of PRO on NA (-) neurons in the VLPO and to determine the involvement of D1 and D2 dopaminergic receptors in mediating these effects.

View Article and Find Full Text PDF

The dopamine (DA) system is central to mood regulation, motivation, and reward processing, making it a critical focus for understanding Major Depressive Disorder (MDD). While the dopaminergic system's role in MDD pathophysiology has been acknowledged, gaps remain in linking specific receptor subtypes and genetic factors to depression-like phenotypes. This study explores the interplay between dopamine receptor subtypes (D1-D5) and associated genetic variations, particularly focusing on receptor heterodimers and polymorphisms influencing dopamine biosynthesis, signalling, and metabolism.

View Article and Find Full Text PDF

Orexin signaling in the ventral tegmental area and substantia nigra promotes locomotion and reward processing, but it is not clear whether dopaminergic neurons directly mediate these effects. We show that dopaminergic neurons in these areas mainly express orexin receptor subtype 1 (Ox1R). In contrast, only a minor population in the medial ventral tegmental area express orexin receptor subtype 2 (Ox2R).

View Article and Find Full Text PDF

Dopamine critically regulates neuronal excitability and promotes synaptic plasticity in the striatum, thereby shaping network connectivity and influencing behavior. These functions establish dopamine as a key neuromodulator, whose release properties have been well-studied in rodents but remain understudied in nonhuman primates. This study aims to close this gap by investigating the properties of dopamine release in macaque striatum and comparing/contrasting them to better-characterized mouse striatum, using ex vivo brain slices from male and female animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!