Previous reports have implicated that pituitary-derived prolactin (PRL) is secreted from two distinct zones of mammotropes within the anterior lobe (AL). The inner zone (AL-IZ), located adjacent to the neuro-intermediate lobe (NIL), is supposed to be involved in the rapid and massive discharge of PRL from the pituitary gland due to suckling stimulus. Whereas the outer-zone (AL-OZ) gives the basal secretion and it does not play a role in the acute secretory response during nursing. Anatomically, the AL-IZ has an intimate contact with the NIL because the blood passing through the short portal vessels (SPV) bathes it first. Based on this fact it would be hypothesized that locally released and/or produced compounds, like OXY and alpha-MSH, can be delivered to the AL-IZ. In conjunction, OXY and alpha-MSH have already been implicated to play a role in the regulation of PRL release during suckling. Therefore, the purpose of this study was to examine the possible local transportation of these hormones into the median eminence and various regions of the pituitary gland of lactating rats. We have measured the concentrations of OXY and alpha-MSH from tissue samples of nonsuckled (NS) and 10 or 30 min after suckling (S) was initiated using specific RIAs. It has been shown that there are no changes in the concentration of OXY and alpha-MSH in theAL-IZ and AL-OZ due to suckling stimulus. In contrast, our data provide compelling evidence that OXY is transported into the IL, which can be further increased by suckling stimulus. These data suggest that blood transfusing NL passes through the IL before it is drained into the cavernous sinus, which opens the road for OXY into the general circulation. In addition, our data have unequivocally shown a lack of local delivery of either alpha MSH or OXY into the AL that raises serious doubt about their possible role in PRL secretion during suckling stimulus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/07435800009066171 | DOI Listing |
J Reprod Dev
August 2023
Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
Gonadal function is often suppressed during lactation in mammals including rodents, ruminants, and primates. This suppression is thought to be mostly due to the inhibition of the tonic (pulsatile) release of gonadotropin-releasing hormone (GnRH) and consequent gonadotropin. Accumulating evidence suggests that kisspeptin neurons in the arcuate nucleus (ARC) play a critical role in the regulation of pulsatile GnRH/gonadotropin release, and kisspeptin mRNA (Kiss1) and/or kisspeptin expression in the ARC are strongly suppressed by the suckling stimuli in lactating rats.
View Article and Find Full Text PDFPeptides
August 2023
Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
Lactational anestrus, characterized by the suppression of pulsatile gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) release, would be a strategic adaptation to ensure survival by avoiding pregnancy during lactation in mammals. In the present article, we first provide a current understanding of the central regulation of reproduction in mammals, i.e.
View Article and Find Full Text PDFFront Immunol
April 2023
College of Animal Science and Technology, Northwest A&F University, Yangling, China.
Endocrinology
March 2023
Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.
Lactation in mammals is associated with a period of infertility, which serves to direct maternal metabolic resources toward caring for the newborn offspring rather than supporting another pregnancy. This lactational infertility is characterized by reduced pulsatile luteinizing hormone (LH) secretion and lack of ovulation. The mechanisms mediating suppression of LH secretion during lactation are unclear.
View Article and Find Full Text PDFNeurosci Lett
November 2022
Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan. Electronic address:
Follicular development and ovulation are profoundly suppressed during lactation. This suppression is suggested to be due to the suckling-induced inhibition of the kisspeptin gene (the master regulator of reproduction) in the arcuate nucleus (ARC) and subsequent inhibition of pulsatile gonadotropin-releasing hormone (GnRH)/gonadotropin release. The present study examined whether hypothalamic κ-opioid receptor (KOR) or µ-opioid receptor (MOR) signaling mediates the suppression of luteinizing hormone (LH) release induced by suckling stimulus during late lactation in rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!