Shot noise in chaotic systems: "classical" to quantum crossover.

Phys Rev Lett

The Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel.

Published: October 2000

This paper is devoted to study of the classical-to-quantum crossover of the shot noise in chaotic systems. This crossover is determined by the ratio of the particle dwell time in the system, tau(d), to the characteristic time for diffraction t(E) approximately lambda(-1)|lnh, where lambda is the Lyapunov exponent. The shot noise vanishes when t(E)>>tau(d), while it reaches a universal value in the opposite limit. Thus, the Lyapunov exponent of chaotic mesoscopic systems may be found by shot noise measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.85.3153DOI Listing

Publication Analysis

Top Keywords

shot noise
16
noise chaotic
8
chaotic systems
8
lyapunov exponent
8
shot
4
systems "classical"
4
"classical" quantum
4
quantum crossover
4
crossover paper
4
paper devoted
4

Similar Publications

Background: Three-dimensional MR fingerprinting (3D-MRF) has been increasingly used to assess cartilage degeneration, particularly in the knee joint, by looking into multiple relaxation parameters. A comparable 3D-MRF approach can be adapted to assess cartilage degeneration for the hip joint, with changes to accommodate specific challenges of hip joint imaging.

Purpose: To demonstrate the feasibility and repeatability of 3D-MRF in the bilateral hip jointly we map proton density (PD), T, T, T, and ∆B in clinically feasible scan times.

View Article and Find Full Text PDF

Investigation of sound pressure waveforms helps the selection of appropriate metrics to evaluate their effects on marine life in relation to noise thresholds. As marine animals move farther away from a sound source, the temporal characteristics of sound pressure may be influenced by interactions with the sediment and the sea surface. Sound pressure kurtosis and root-mean-square (rms) sound pressure are quantitative characteristics that depend on the shape of a sound pulse, with kurtosis related to the qualitative characteristic "impulsiveness.

View Article and Find Full Text PDF

Purpose: To evaluate the feasibility of multiplexed sensitivity-encoding (MUSE) with deep learning-based reconstruction (DLR) for breast imaging in comparison with conventional diffusion-weighted imaging (DWI) and MUSE alone.

Methods: This study was conducted using conventional single-shot DWI and MUSE data of female participants who underwent breast magnetic resonance imaging (MRI) from June to December 2023. The k-space data in MUSE were reconstructed using both conventional reconstruction and DLR.

View Article and Find Full Text PDF

Discrete Synaptic Events Induce Global Oscillations in Balanced Neural Networks.

Phys Rev Lett

December 2024

Laboratoire de Physique Théorique et Modélisation, CY Cergy Paris Université, CNRS, UMR 8089, 95302 Cergy-Pontoise cedex, France.

Despite the fact that neural dynamics is triggered by discrete synaptic events, the neural response is usually obtained within the diffusion approximation representing the synaptic inputs as Gaussian noise. We derive a mean-field formalism encompassing synaptic shot noise for sparse balanced neural networks. For low (high) excitatory drive (inhibitory feedback) global oscillations emerge via continuous or hysteretic transitions, correctly predicted by our approach, but not from the diffusion approximation.

View Article and Find Full Text PDF

Deep learning enhanced quantum holography with undetected photons.

Photonix

December 2024

Department of Biomedical Engineering, Texas A&M University, College Station, 77843 TX USA.

Unlabelled: Holography is an essential technique of generating three-dimensional images. Recently, quantum holography with undetected photons (QHUP) has emerged as a groundbreaking method capable of capturing complex amplitude images. Despite its potential, the practical application of QHUP has been limited by susceptibility to phase disturbances, low interference visibility, and limited spatial resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!