We have investigated the protein interactions involved in the assembly of pancreatic beta-cell ATP-sensitive potassium channels. The channels are a heterooligomeric complex of pore-forming Kir6.2 subunits and sulfonylurea receptor (SUR1) subunits. SUR1 belongs to the ATP binding cassette (ABC) family of proteins and has two nucleotide binding domains (NBD1 and NBD2) and 17 putative transmembrane (TM) sequences. Previously we showed that co-expression in a baculovirus expression system of two parts of SUR1 divided at Pro1042 between TM12 and 13 leads to restoration of glibenclamide binding activity, whereas expression of either individual N- or C-terminal domain alone gave no glibenclamide binding activity [M.V. Mikhailov and S.J.H. Ashcroft (2000) J. Biol. Chem. 275, 3360-3364]. Here we show that the two half-molecules formed by division of SUR1 between NBD1 and TM12 or between TM13 and 14 also self-assemble to give glibenclamide binding activity. However, deletion of NBD1 from the N-part of SUR1 abolished SUR1 assembly, indicating a critical role for NBD1 in SUR1 assembly. We found that differences in glibenclamide binding activity obtained after co-expression of different half-molecules are attributable to different amounts of binding sites, but the binding affinities remained nearly the same. Simultaneous expression of Kir6.2 resulted in enhanced glibenclamide binding activity only when the N-half of SUR1 included TM12. We conclude that TM12 and 13 are not essential for SUR1 assembly whereas TM12 takes part in SUR1 Kir6.2 interaction. This interaction is specific for Kir 6.2 because no enhancement of glibenclamide binding was observed when half-molecules were expressed together with Kir4.1. We propose a model of K(ATP) channel organisation based on these data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0014-5793(00)02035-4 | DOI Listing |
Front Immunol
December 2024
Department of Rheumatology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China.
Idiopathic inflammatory myopathies (IIM) are a group of systemic autoimmune diseases characterized by muscle weakness and elevated serum creatine kinase levels. Recent research has highlighted the role of the innate immune system, particularly inflammasomes, in the pathogenesis of IIM. This review focuses on the role of inflammasomes, specifically NLRP3 and AIM2, and their associated proteins in the development of IIM.
View Article and Find Full Text PDFPLoS One
November 2024
Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt.
Epstein-Barr virus (EBV) was the first tumor virus identified in humans, and it is mostly linked to lymphomas and cancers of epithelial cells. Nevertheless, there is no FDA-licensed drug feasible for this ubiquitous EBV viral contagion. EBNA1 (Epstein-Barr nuclear antigen 1) plays several roles in the replication and transcriptional of latent gene expression of the EBV, making it an attractive druggable target for the treatment of EBV-related malignancies.
View Article and Find Full Text PDFAutophagy
November 2024
Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM, USA.
Mitophagy, the process by which cells eliminate damaged mitochondria, is mediated by PINK1 (PTEN induced kinase 1). Our recent research indicates that PINK1 functions as a tumor suppressor in colorectal cancer by regulating cellular metabolism. Interestingly, PINK1 ablation activated the NLRP3 (NLR family pyrin domain containing 3) inflammasome, releasing IL1B (interleukin 1 beta).
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Alexandria University, Egypt. Electronic address:
J Ethnopharmacol
January 2025
Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!