Suppression of preadipocyte differentiation and promotion of adipocyte death by HIV protease inhibitors.

J Biol Chem

Departments of Biological Chemistry, Pharmacology and Molecular Sciences, and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

Published: December 2000

Many human immunodeficiency virus (HIV)-infected patients taking combination antiretroviral therapy that includes HIV protease inhibitors experience atrophy of peripheral subcutaneous adipose tissue. We investigated the effects of HIV protease inhibitors on adipogenesis and adipocyte survival using the 3T3-L1 preadipocyte cell line. Several HIV protease inhibitors were found either to inhibit preadipocyte differentiation or to promote adipocyte cell death. One protease inhibitor, nelfinavir, elicited both of these effects strongly. When induced to differentiate in the presence of nelfinavir, 3T3-L1 preadipocytes failed to accumulate cytoplasmic triacylglycerol and failed to express normal levels of the adipogenic transcription factors CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. The level of the proteolytically processed, active 68-kDa form of sterol regulatory element-binding protein-1, a transcription factor known to promote lipogenic gene expression, also was reduced markedly in nelfinavir-treated cells, whereas the level of the 125-kDa precursor form of this protein was unaffected. The inhibitory effect of nelfinavir occurred subsequent to critical early events in preadipocyte differentiation, expression of CCAAT/enhancer-binding protein beta and completion of the mitotic clonal expansion phase, because these events were unaffected by nelfinavir treatment. In addition, nelfinavir treatment of fully differentiated 3T3-L1 adipocytes resulted in DNA strand cleavage and severe loss of cell viability. In contrast, cell proliferation and viability of preadipocytes were unaffected by nelfinavir treatment. Thus, molecular or cellular changes that occur during acquisition of the adipocyte phenotype promote susceptibility to nelfinavir-induced cell death. When considered together, these results suggest that nelfinavir may promote adipose tissue atrophy by compromising adipocyte viability and preventing replacement of lost adipocytes by inhibiting preadipocyte differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M006474200DOI Listing

Publication Analysis

Top Keywords

preadipocyte differentiation
16
hiv protease
16
protease inhibitors
16
nelfinavir treatment
12
adipose tissue
8
cell death
8
ccaat/enhancer-binding protein
8
unaffected nelfinavir
8
nelfinavir
7
adipocyte
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!