Spectacular features are observed on the velocity-force characteristics of a vibrating wire resonator in superfluid 3He-B at ultralow temperatures. Both plateaus and discontinuities are seen in the characteristics. The plateaus seem to have two separate critical velocities where first some "event" occurs, which causes the wire to lose energy and slow down, followed by a second lower critical velocity where the event decouples. It is suggested that these events are due to vortex-loop creation at protuberances on the vibrating wire. This opens up the possibility of controlling the creation of vorticity through specially prepared protuberances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.84.1252 | DOI Listing |
Molecules
January 2025
Yunnan Key Laboratory for Pollution Processes and Control of Plateau Lake-Watersheds, Yunnan Institute of Ecological and Environmental Sciences, Kunming 650034, China.
Diamond-wire sawing silicon waste (DSSW) derived from the silicon wafer sawing process may lead to resource waste and environmental issues if not properly utilized. This paper propounds a simple technique aimed at enhancing the efficiency of hydrogen production from DSSW. The hydrolysis reaction is found to become faster when DSSW is ground.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Faculty of Electrical and Electronics Engineering, Kaunas University of Technology, LT-51367 Kaunas, Lithuania.
Pantograph-based electrical current transmission systems are used in electric traction vehicles. The contact surface between the pantograph and the catenary wire experiences mechanical and thermal effects during the train's movement. Typically, this contact surface on the pantograph is covered by a segmented carbon or copper rod, attached to an aluminum base.
View Article and Find Full Text PDFHeliyon
May 2024
Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, P.O. Box 87317-53153, Iran.
Phys Rev Lett
November 2024
Department of Physics, IQIM, California Institute of Technology, Pasadena, California 91125, USA.
External coherent fields can drive quantum materials into nonequilibrium states, revealing exotic properties that are unattainable under equilibrium conditions-an approach known as "Floquet engineering." While optical lasers have commonly been used as the driving fields, recent advancements have introduced nontraditional sources, such as coherent phonon drives. Building on this progress, we demonstrate that driving a metallic quantum nanowire with a coherent wave of terahertz phonons can induce an electronic steady state characterized by a persistent quantized current along the wire.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!