We investigate the double-layer electron system in a parabolic quantum well at filling factor nu=2 in a tilted magnetic field using capacitance spectroscopy. The competition between two ground states is found at the Zeeman splitting appreciably smaller than the symmetric-antisymmetric splitting. Although at the transition point the system breaks up into domains of the two competing states, the activation energy turns out to be finite, signaling the occurrence of a new insulator-insulator quantum phase transition. We interpret the obtained results in terms of a predicted canted antiferromagnetic phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.84.725 | DOI Listing |
Sci Adv
January 2025
2D Crystal Consortium, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA.
Small
December 2024
Department of Applied Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China.
The observation of both resonant quantum tunneling of magnetization (RQTM) and resonant quantum magnetodielectric (RQMD) effect in the perovskite multiferroic metal-organic framework [CHNH]Co(HCOO).is reported. An intrinsic magnetic phase separation emerges at low temperatures due to the hydrogen-bond-modified long-range super-exchange interaction, leading to the coexistence of canted antiferromagnetic order and single-ion (Co) magnets.
View Article and Find Full Text PDFACS Omega
December 2024
Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
Two-dimensional organic-inorganic perovskites have been attracted as candidates for multiferroic materials that exhibit two or more ferroic orders such as ferromagnetism, ferroelectricity, ferroelasticity, and ferrotoroidicity. Here, we introduce the structure, ferroelastic domains and magnetic properties of the two-dimensional organic-inorganic perovskite [CH(CH)NH]FeCl (CHEA-Fe) composed of 2-(1-cyclohexenyl)ethylammonium and FeCl . CHEA-Fe underwent two ferroelastic phase transitions from tetragonal to orthorhombic at 332 K and to monoclinic at 232 K with decreasing temperature and exhibited ferroelastic domains under polarized light as a consequence of these ferroelastic phase transitions.
View Article and Find Full Text PDFInorg Chem
December 2024
Materials, Chemical, and Computational Sciences Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States.
To synthetically target a specific material with select performance, the underlying relationship between structure and function must be understood. For targeting magnetic properties, such understanding is underdeveloped for a relatively new class of layered hexagonal perovskites, the 12R-BaMnO family. Here, we perform a detailed magnetostructural study of the layered hexagonal perovskite materials 12R-BaMnO, where = diamagnetic Ce or paramagnetic ≈ 1/2 Pr.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Department of Physics, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, USA.
We perform infrared magnetospectroscopy of Landau level (LL) transitions in dual-gated bilayer graphene. At ν=4 when the zeroth LL (octet) is filled, two resonances are observed indicating the opening of a gap. At ν=0 when the octet is half-filled, multiple resonances disperse nonmonotonically with increasing displacement field, D, perpendicular to the sheet, showing a phase transition at modest displacement fields from a canted antiferromagnet (CAFM) to the layer-polarized state, with a gap that opens linearly in D.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!