Hall effect and conduction anisotropy in the organic conductor (TMTSF)2PF6.

Phys Rev Lett

IGA, Ecole Politechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland and Department of Physics, Technical University of Budapest, H-1111 Budapest, Hungary.

Published: March 2000

Both the Hall effect and the ab(')-plane conduction anisotropy are directly addressing the unconventional normal phase properties of the Bechgaard salt (TMTSF)2PF6. We found that the dramatic reduction of the carrier density deduced from recent optical data is not reflected in an enhanced Hall resistance. The pressure and temperature dependence of the b(')-direction resistivity reveal isotropic relaxation time and do not require explanations beyond the Fermi liquid theory. Our results allow a coherent-diffusive transition in the interchain carrier propagation, however the possible crossover to Luttinger liquid behavior is placed at an energy scale above room temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.84.2670DOI Listing

Publication Analysis

Top Keywords

conduction anisotropy
8
hall conduction
4
anisotropy organic
4
organic conductor
4
conductor tmtsf2pf6
4
tmtsf2pf6 hall
4
hall ab'-plane
4
ab'-plane conduction
4
anisotropy directly
4
directly addressing
4

Similar Publications

Magnetoelastic anisotropy drives localized magnetization reversal in 3D nanowire networks.

Nanoscale

January 2025

Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC) Isaac Newton, 8, Tres Cantos, Madrid, E-28760, Spain.

Three-dimensional magnetic nanowire networks (3DNNs) have shown promise for applications beyond those of their linear counterparts. However, understanding the underlying magnetization reversal mechanisms has been limited. In this study, we present a combined experimental and computational investigation on simplified 3DNNs to address this gap.

View Article and Find Full Text PDF

Background: Preterm infants are at high risk for subsequent neurodevelopmental disability. Early developmental characterization of brain and neurobehavioral function is critical for identifying high-risk infants. This study aimed to elucidate the early evolution of sensorimotor function in preterm neonates by exploring postnatal age-related changes in the brain white matter (WM) and neurobehavioral abilities.

View Article and Find Full Text PDF

Carbon-carbon (C/C) composites are attractive materials for high-speed flights and terrestrial atmospheric reentry applications due to their insulating thermal properties, thermal resistance, and high strength-to-weight ratio. It is important to understand the evolving structure-property correlations in these materials during pyrolysis, but the extreme laboratory conditions required to produce C/C composites make it difficult to quantify the properties . This work presents an atomistic modeling methodology to pyrolyze a crosslinked phenolic resin network and track the evolving thermomechanical properties of the skeletal matrix during simulated pyrolysis.

View Article and Find Full Text PDF

Creating durable, motion-compliant neural interfaces is crucial for accessing dynamic tissues under in vivo conditions and linking neural activity with behaviors. Utilizing the self-alignment of nano-fillers in a polymeric matrix under repetitive tension, here, we introduce conductive carbon nanotubes with high aspect ratios into semi-crystalline polyvinyl alcohol hydrogels, and create electrically anisotropic percolation pathways through cyclic stretching. The resulting anisotropic hydrogel fibers (diameter of 187 ± 13 µm) exhibit fatigue resistance (up to 20,000 cycles at 20% strain) with a stretchability of 64.

View Article and Find Full Text PDF

Two multifunctional zero-dimensional Gd(III) complexes: magnetocaloric effect and anticancer mechanisms for lung cancer.

J Inorg Biochem

January 2025

Department of Pharmaceutical Engineering, Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu 233030, PR China. Electronic address:

Two Gd(III) complexes [GdL(HO)(NO)(CHOH)(CHCHOH)] (Gd1) and [Gd(OOCCH)L(HO)]•2(HO) (Gd2) (HL = 2-pyridylcarboxaldehyde isonicotinoylhydrazone) were synthesized with a Schiff base ligand. Crystallographic study reveals both Gd1 and Gd2 have a zero-dimensional mononuclear or binuclear structure. Magnetic investigations demonstrate that Gd1 and Gd2 exhibit potential magnetocaloric effects due to Gd(III) ions, which provide negligible magnetic anisotropy, and possess low-lying excited spin states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!