Activation of atypical protein kinase C zeta by caspase processing and degradation by the ubiquitin-proteasome system.

J Biol Chem

Department of Pharmacology & Toxicology, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Alabama 35294, USA.

Published: December 2000

Atypical protein kinase C zeta (PKCzeta) is known to transduce signals that influence cell proliferation and survival. Here we show that recombinant human caspases can process PKCzeta at three sites in the hinge region between the regulatory and catalytic domains. Caspase-3, -6, -7, and -8 chiefly cleaved human PKCzeta at EETD downward arrowG, and caspase-3 and -7 also cleaved PKCzeta at DGMD downward arrowG and DSED downward arrowL, respectively. Processing of PKCzeta expressed in transfected cells occurred chiefly at EETD downward arrowG and DGMD downward arrowG and produced carboxyl-terminal polypeptides that contained the catalytic domain. Epitope-tagged PKCzeta that lacked the regulatory domain was catalytically active following expression in HeLa cells. Induction of apoptosis in HeLa cells by tumor necrosis factor alpha plus cycloheximide evoked the conversion of full-length epitope-tagged PKCzeta to two catalytic domain polypeptides and increased PKCzeta activity. A caspase inhibitor, zVAD-fmk, prevented epitope-tagged PKCzeta processing and activation following the induction of apoptosis. Induction of apoptosis in rat parotid C5 cells produced catalytic domain polypeptides of endogenous PKCzeta and increased PKCzeta activity. Caspase inhibitors prevented the increase in PKCzeta activity and production of the catalytic domain polypeptides. Treatment with lactacystin, a selective inhibitor of the proteasome, caused polyubiquitin-PKCzeta conjugates to accumulate in cells transfected with the catalytic domain or full-length PKCzeta, or with a PKCzeta mutant that was resistant to caspase processing. We conclude that caspases process PKCzeta to carboxyl-terminal fragments that are catalytically active and that are degraded by the ubiquitin-proteasome pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M908517199DOI Listing

Publication Analysis

Top Keywords

catalytic domain
20
downward arrowg
16
pkczeta
15
epitope-tagged pkczeta
12
induction apoptosis
12
domain polypeptides
12
pkczeta activity
12
atypical protein
8
protein kinase
8
kinase zeta
8

Similar Publications

The study was conducted to detect the occurrence and phenotypic resistance pattern of ESBL-producing Enterobacteriaceae in livestock using docking based analysis to reveal the classes of antibiotics against which ESBL-producers are active. Rectal swabs from healthy cattle (n=100), goats (n=88), pigs (n=66) were collected from backyard farms in Andaman and Nicober island (India). In total, 304 isolates comprising E.

View Article and Find Full Text PDF

SAMHD1 shapes deoxynucleotide triphosphate homeostasis by interconnecting the depletion and biosynthesis of different dNTPs.

Nat Commun

January 2025

Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA.

SAMHD1 is a dNTPase that impedes replication of HIV-1 in myeloid cells and resting T lymphocytes. Here we elucidate the substrate activation mechanism of SAMHD1, which involves dNTP binding at allosteric sites and transient tetramerization. Our findings reveal that tetramerization alone is insufficient to promote dNTP hydrolysis; instead, the activation mechanism requires an inactive tetrameric intermediate with partially occupied allosteric sites.

View Article and Find Full Text PDF

Enterococcus faecalis is a multi-drug-resistant human pathogen that is found in a variety of environments and is challenging to treat. Under stress conditions, some bacteria regulate intracellular polyamine concentrations via polyamine acetyltransferases to reduce their toxicity. The E.

View Article and Find Full Text PDF

The SWItch/Sucrose Non-Fermenting (SWI/SNF) complexes are evolutionarily conserved, ATP-dependent chromatin remodelers crucial for multiple nuclear functions in eukaryotes. Recently, plant BCL-DOMAIN HOMOLOG (BDH) proteins were identified as shared subunits of all plant SWI/SNF complexes, significantly impacting chromatin accessibility and various developmental processes in Arabidopsis. In this study, we performed a comprehensive characterization of mutants, revealing the role of BDH in hypocotyl cell elongation.

View Article and Find Full Text PDF

Factor XIa (FXIa) is a plasma protease that plays a crucial role in the intrinsic pathway of blood coagulation, making it a promising target for antithrombotic therapy. Circular DNA aptamers, with their dramatically enhanced biological and structural stability, hold great potential as new-generation DNA-based anticoagulants. However, the functional selection and large-scale synthesis of them remains a substantial challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!