Both Listeria monocytogenes infection and silica exposure have been shown to significantly alter immune responses. In this study, we evaluated the effect of preexposure to silica on lung defense mechanisms using a rat pulmonary L. monocytogenes infection model. Male Sprague-Dawley rats were instilled intratracheally with saline (vehicle control) or silica using either an acute treatment regimen (5 mg/kg; 3 days) or a subchronic treatment protocol (80 mg/kg; 35 days). At 3 or 35 days after silica instillation, the rats were inoculated intratracheally with either approximately 5000 or 500,000 L. monocytogenes. At 3, 5, and 7 days postinfection, the left lung was removed, homogenized, and cultured on brain heart infusion agar at 37 degrees C. The numbers of viable L. monocytogenes were counted after an overnight incubation. Bronchoalveolar lavage (BAL) was performed on the right lungs, and BAL cell differentials, acellular lactate dehydrogenase (LDH) activity and albumin content were determined. Alveolar macrophage (AM) chemiluminescence (CL) and phagocytosis were assessed as a measure of macrophage function. Lung-associated lymph nodes were removed, and lymphocytes were recovered and differentiated. Preexposure to silica significantly increased the pulmonary clearance of L. monocytogenes as compared to saline controls. Exposure to silica caused significant increases in BAL neutrophils, LDH and albumin, and lymph-nodal T cells and natural killer (NK) cells in infected and noninfected rats. CL and phagocytosis were also elevated in silica-treated rats. In summary, the results demonstrated that exposure of rats to silica enhanced pulmonary immune responses, as evidenced by increases in neutrophils, NK cells, T lymphocytes, and macrophage activation. These elevations in pulmonary immune response are likely responsible for the increase in pulmonary clearance of L. monocytogenes observed with preexposure to silica.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08958370050164635DOI Listing

Publication Analysis

Top Keywords

pulmonary clearance
12
preexposure silica
12
silica exposure
8
defense mechanisms
8
listeria monocytogenes
8
monocytogenes infection
8
silica
8
immune responses
8
mg/kg days
8
clearance monocytogenes
8

Similar Publications

Tanimilast is an inhaled phosphodiesterase-4 inhibitor currently in phase III clinical development for treating chronic obstructive pulmonary disease and asthma. This trial aimed to characterize the pharmacokinetics, mass balance, and metabolite profiling of tanimilast. Eight healthy male volunteers received a single dose of nonradiolabeled tanimilast via powder inhaler (Chiesi NEXThaler [3200 μg]), followed by a concomitant intravenous infusion of a microtracer ([C]-tanimilast: 18.

View Article and Find Full Text PDF

Damage sensing through TLR9 regulates inflammatory and antiviral responses during influenza infection.

Mucosal Immunol

January 2025

Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh Medical Center Pittsburgh PA USA; Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine New Haven CT USA. Electronic address:

Host response aimed at eliminating the infecting pathogen, as well as the pathogen itself, can cause tissue injury. Tissue injury leads to the release of a myriad of cellular components including mitochondrial DNA, which the host senses through pattern recognition receptors. How the sensing of tissue injury by the host shapes the anti-pathogen response remains poorly understood.

View Article and Find Full Text PDF

The utility of urinary tests for the monitoring of the treatment efficacy and adverse events of anticancer therapies is constrained by the low concentration of relevant urinary biomarkers. Here we report, using mice with lung cancer and treated with chemotherapy, of a urinary fluorescence test for the concurrent monitoring of the levels of a tumour biomarker (cathepsin B) and of a biomarker of chemotherapy-induced kidney injury (N-acetyl-β-D-glucosaminidase). The test involves two intratracheally administered urinary reporters leveraging caged bioorthogonal click handles for the biomarker-dependent activation of 'clickability' and renal clearance, and the bioorthogonal click reaction of each renally cleared reporter with paired fluorescence indicators in the collected urine.

View Article and Find Full Text PDF

The degree of cross-linking of polyacrylic acid affects the fibrogenicity in rat lungs.

Sci Rep

January 2025

Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan.

Polyacrylic acid (PAA) with different concentrations of cross-linker was instilled into the trachea of rats to examine the effect of PAA crosslink density on lung disorders. Methods: F344 rats were intratracheally exposed to low and high doses of PAA with cross-linker concentrations of 0.1, 1.

View Article and Find Full Text PDF

Pharmacokinetic modeling of prenatal vitamin D exposure and the impact on offspring asthma and pulmonary function.

Biomed Pharmacother

January 2025

Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. Electronic address:

Gestational 25-hydroxyvitamin D (25[OH]D) is important in fetal lung development and may influence offspring respiratory outcomes, making accurate exposure assessment essential to understand clinical associations. Therefore, we used the combined data from two large RCTs investigating prenatal vitamin D supplementation, which included early and late prenatal 25(OH)D measurements, to refine a population pharmacokinetic model of vitamin D-25(OH)D and estimate individual area under the curve (AUC) Z-scores. The primary outcome was physician-diagnosed offspring asthma/wheezing at ages 3 and 6 years, and lung function, as a secondary outcome, was evaluated by spirometry at the ages 6 and 8 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!