On-line combination of capillary isoelectric focusing (CIEF) with electrospray ionization Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry is demonstrated for high-resolution analysis of model proteins, human hemoglobin variants, and Escherichia coli proteins. The acquisition of high-resolution mass spectra of hemoglobin beta chains allows direct identification of hemoglobin variants A and C, differing in molecular mass by 1 Da. Direct mass determination of cellular proteins separated in the CIEF capillary is achieved using their isotopic envelopes obtained from ESI-FTICR. The factors which dictate overall performance of CIEF-ESI-FTICR, including duty cycle, mass resolution, scan rate, and sensitivity, are discussed in the context of protein variants and cell lysates analyzed in this study.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac980224oDOI Listing

Publication Analysis

Top Keywords

capillary isoelectric
8
ionization fourier
8
fourier transform
8
transform ion
8
ion cyclotron
8
cyclotron resonance
8
mass spectrometry
8
hemoglobin variants
8
mass
6
isoelectric focusing-electrospray
4

Similar Publications

Imaged capillary isoelectric focusing and online mass spectrometry for milk whey protein characterization in dairy products.

Anal Biochem

January 2025

Advanced Electrophoresis Solutions Ltd., 380 Jamieson Parkway, Unit 7 and 8, ON, N3C 4N4, Canada; AES Biotech Jiaxing Ltd., No. 501 South Changsheng Road, Economic and Technological Development Zone, Jiaxing City, Zhejiang Province, PR China. Electronic address:

Characterizing major bovine milk proteins, including whey and casein, is of significant interest in the dairy industry. The diverse array of protein proteoforms can be different in terms of genetic variation, breed ways, lactation stage, and animal nutritional status. Current routine methods for bovine milk protein profiling are typically based on immunological techniques, infrared spectroscopy, slab gel isoelectric focusing, capillary electrophoresis, and high-performance liquid chromatography.

View Article and Find Full Text PDF

Intact protein analysis using mass spectrometry (MS) is an important technique to characterize and provide a comprehensive overview of protein complexity. It is also the basis of "top-down" approaches in proteomics to describe the proteoforms of single protein's post-translational modifications (PTMs). MS-based analysis of intact proteins benefits from high-resolution separations prior to electrospray ionization.

View Article and Find Full Text PDF

Imaged capillary isoelectric focusing was successfully applied for separating an in-house synthesized closely related peptide pair, that is, a linear 12-mer (Rp5-L) and its cyclic 15-mer variant (Rp5-C). Rp5-L represents a mimotope, that is, an epitope mimicking peptide, of the CD20 antigen, which is over-expressed in B-cell-related tumors. Peptide identity-including the successful disulfide bond formation in Rp5-C-was confirmed with matrix-assisted laser desorption ionization-time of flight mass spectrometry.

View Article and Find Full Text PDF

Introduction: Cyanobacterium Arthrospira platensis (AP) (Nordstedt) Gomont contains high content of phycobiliproteins (PBP), which are an important source for food industry. Methods effectively extracting proteins contained in AP cells are demanded to provide a supply of the material. Water-based extraction methods are advisable due to the high solubility of the PBP.

View Article and Find Full Text PDF

The dynamics of three one-step focusing protocols described in the literature for IEF-MS analyses of proteins are assessed by computer simulation. Focusing of 101 carrier ampholytes (pI range 3.0-11.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!