Although preproenkephalin mRNA is abundant in the heart, the myocardial synthesis and processing of proenkephalin is largely undefined. Isolated working rat hearts were perfused to determine the rate of myocardial proenkephalin synthesis, its processing into enkephalin-containing peptides, their subsequent release into the coronary arteries, and the influence of prior sympathectomy. Enkephalin-containing peptides were separated by gel filtration and quantified with antisera for specific COOH-terminal sequences. Proenkephalin, peptide B, and [Met(5)]enkephalin-Arg(6)-Phe(7) (MEAP) comprised 95% of the extracted myocardial enkephalins (35 pmol/g). Newly synthesized enkephalins, estimated during a 1-h perfusion with [(14)C]phenylalanine (4 pmol x h(-1) x g wet wt(-1)), were rapidly cleared from the heart during a second isotope-free hour. Despite a steady release of enkephalins into the coronary effluent (4 pmol x h(-1) x g wet wt(-1)), enkephalin replacement apparently exceeded its release, and tissue enkephalins actually accumulated during hour 2. In contrast to the tissue, methionine-enkephalin accounted for more than half of the released enkephalin. Chemical sympathectomy produced an increase in total enkephalin content similar to that observed after 2-h control perfusion. This observation suggested that the normal turnover of myocardial enkephalin may depend in part on continued sympathetic influences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.2000.279.4.H1989 | DOI Listing |
Reprod Biol Endocrinol
January 2025
Department of Molecular and Developmental Medicine, Siena University, Siena, 53100, Italy.
Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).
View Article and Find Full Text PDFBMC Pulm Med
January 2025
Universal Scientific Education and Research Network (USERN), Tehran, Iran.
Objective: Lung cancer (LC), the primary cause for cancer-related death globally is a diverse illness with various characteristics. Saliva is a readily available biofluid and a rich source of miRNA. It can be collected non-invasively as well as transported and stored easily.
View Article and Find Full Text PDFBMC Med Genomics
January 2025
Department of Surgery, Faculty of General of Medicine, Koya University, Koya, Kurdistan Region - F.R., KOY45, Iraq.
Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.
Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).
BMC Genomics
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Hematology, Second Xiang-ya Hospital, Central South University, Changsha, China.
Acute B-lymphoblastic leukemia (B-ALL) is a highly heterogeneous hematologic malignancy, characterized by significant molecular differences among patients as the disease progresses. While the PI3K-Akt signaling pathway and metabolic reprogramming are known to play crucial roles in B-ALL, the interactions between lipid metabolism, immune pathways, and drug resistance remain unclear. In this study, we performed multi-omics analysis on different patient cohorts (newly diagnosed, relapsed, standard-risk, and poor-risk) to investigate the molecular characteristics associated with metabolism, signaling pathways, and immune regulation in B-ALL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!