Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG.

IEEE Trans Biomed Eng

Center for Sleep and Wake Disorders, MCH Westeinde Hospital, CK Den Haag, The Netherlands.

Published: September 2000

Increasing depth of sleep corresponds to an increasing gain in the neuronal feedback loops that generate the low-frequency (slow-wave) electroencephalogram (EEG). We derived the maximum-likelihood estimator of the feedback gain and applied it to quantify sleep depth. The estimator computes the fraction (0%-100%) of the current slow wave which continues in the near-future (0.02 s later) EEG. Therefore, this percentage was dubbed slow-wave microcontinuity (SW%). It is not affected by anatomical parameters such as skull thickness, which can considerably bias the commonly used slow-wave power (SWP). In our study, both of the estimators SW% and SWP were monitored throughout two nights in 22 subjects. Each subject took temazepam (a benzodiazepine) on one of the two nights. Both estimators detected the effects of age, temazepam, and time of night on sleep. Females were found to have twice the SWP of males, but no gender effect on SW% was found. This confirms earlier reports that gender affects SWP but not sleep depth. Subjectively assessed differences in sleep quality between the nights were correlated to differences in SW%, not in SWP. These results demonstrate that slow-wave microcontinuity, being based on a physiological model of sleep, reflects sleep depth more closely than SWP does.

Download full-text PDF

Source
http://dx.doi.org/10.1109/10.867928DOI Listing

Publication Analysis

Top Keywords

slow-wave microcontinuity
12
sleep depth
12
neuronal feedback
8
sw% swp
8
sleep
7
swp
6
slow-wave
5
analysis sleep-dependent
4
sleep-dependent neuronal
4
feedback loop
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!