In this paper the nature of root-to-shoot signals in plants growing in drying soil is considered in the context of their commercial exploitation in tomato (Lycopersicon esculentum L.) and other crops. Recent findings are presented on the effects of partial root drying (PRD) in the production of a glasshouse tomato crop. These findings show how an understanding of both root-to-shoot signalling mechanisms and fruit hydraulic architecture may explain observed increases in fruit quality, the differential effects of PRD on vegetative and reproductive production and the incidence of blossom end rot. Evidence is provided to support the hypothesis that the success of PRD may lie, at least in part, in the relative chemical and hydraulic isolation of the tomato fruit.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jexbot/51.350.1617DOI Listing

Publication Analysis

Top Keywords

plants growing
8
growing drying
8
drying soil
8
hydraulic architecture
8
regulation leaf
4
fruit
4
leaf fruit
4
fruit growth
4
growth plants
4
soil exploitation
4

Similar Publications

Antimycobacterial and Antifungal Activities of Leaf Extracts From .

Scientifica (Cairo)

December 2024

Department of Therapeutics, Natural Products Unit, Wilkins Hospital Block C, Cnr J. Tongogara and R. Tangwena, The African Institute of Biomedical Research and Technology (AiBST), Harare, Zimbabwe.

The global problem of infectious and deadly diseases caused by microbes such as candida and mycobacteria presents major scientific and medical challenges. Antimicrobial drug resistance is a rapidly growing problem with potentially devastating consequences. Various pathogens can cause skin infections, such as bacteria, fungi, and parasites.

View Article and Find Full Text PDF

The growing problem of antibiotic resistance has driven the search for new sources of antimicrobial agents. Plants, particularly those from the Malvaceae family, have showed promising potential in this field. The present study is based on extracts, and the antimicrobial action was assessed using and as experimental bacterial strains.

View Article and Find Full Text PDF

In the context of the Sustainable Development Goals (SDGs), which strive to ensure comprehensive access to fundamental water, sanitation, and hygiene (WASH) services, it is extremely imperative to prioritize communities in need and still disadvantaged. Moreover, tackling the worldwide sanitation crisis entails advancing the development of productive and sustainable sanitation systems and infrastructure. Sanitation planning is a multidimensional exercise encompassing multiple dimensions, stakeholders, and strategies, typically with conflicting objectives.

View Article and Find Full Text PDF

Over time, the importance of virtual power plants (VPP) has markedly risen to seamlessly incorporate the sporadic nature of renewable energy sources into the existing smart grid framework. Simultaneously, there is a growing need for advanced forecasting methods to bolster the grid's stability, flexibility, and dispatchability. This paper presents a dual-pronged, innovative approach to maximize income in the day-ahead power market through VPP.

View Article and Find Full Text PDF

Plant Oil Nano-Emulsions as a Potential Solution for Pest Control in Sustainable Agriculture.

Neotrop Entomol

January 2025

Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, 21545-El-Shatby, Alexandria, Egypt.

The increasing demand for sustainable and eco-friendly pest control methods has led to a growing interest in the development of novel, plant-based pesticides. In this study, we investigated the potential of nano-emulsions containing plant oils (Portulaca oleracea, Raphanus sativus, and Rosmarinus officinalis) as a new approach for controlling three major pests: Aphis gossypii, Spodoptera littoralis, and Tetranychus urticae. Using ultrasonication, we prepared stable and uniform nano-emulsions characterized by thermodynamic properties, dynamic light scattering (DLS), and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!