The Holliday junction cleavage protein, Hjc resolvase of Pyrococcus furiosus, is the first Holliday junction resolvase to be discovered in Archaea. Although the archaeal resolvase shares certain biochemical properties with other non-archaeal junction resolvases, no amino acid sequence similarity has been identified. To investigate the structure-function relationship of this new Holliday junction resolvase, we constructed a series of mutant hjc genes using site-directed mutagenesis targeted at the residues conserved among the archaeal orthologs. The products of these mutant genes were purified to homogeneity. With analysis of the activity of the mutant proteins to bind and cleave synthetic Holliday junctions, one acidic residue, Glu-9, and two basic residues, Arg-10 and Arg-25, were found to play critical roles in enzyme action. This is in addition to the three conserved residues, Asp-33, Glu-46, and Lys-48, which are also conserved in the motif found in the type II restriction endonuclease family proteins. Two aromatic residues, Phe-68 and Phe-72, are important for the formation of the homodimer probably through hydrophobic interactions. The results of these studies have provided insights into the structure-function relationships of the archaeal Holliday junction resolvase as well as the universality and diversity of the Holliday junction cleavage reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M006294200DOI Listing

Publication Analysis

Top Keywords

holliday junction
24
junction resolvase
16
pyrococcus furiosus
8
furiosus holliday
8
junction
8
junction cleavage
8
holliday
7
resolvase
6
residues
5
mutational analysis
4

Similar Publications

AT-rich sequence can cause structure variants such as translocations and its instability can be accelerated by replication stresses. When human 16p11.2 or 22q11.

View Article and Find Full Text PDF

Long AT repeat tracts form non-B DNA structures that stall DNA replication and cause chromosomal breakage. AT repeats are abundant in human common fragile sites (CFSs), genomic regions that undergo breakage under replication stress. Using an in vivo yeast model system containing AT-rich repetitive elements from human CFS FRA16D, we find that DNA polymerase zeta (Pol ζ) is required to prevent breakage and subsequent deletions at hairpin and cruciform forming (AT/TA)n sequences, with little to no role at an (A/T)28 repeat or a control non-structure forming sequence.

View Article and Find Full Text PDF

Objectives: To investigate the role of Holliday cross-recognition protein (HJURP) in tumorigenesis, progression, and immunotherapy responses.

Methods: Bioinformatics approaches were used to analyze the expression level of in various cancers and its association with prognosis, clinical stage, and immune cell infiltration using TCGA, GTEx, SangerBox and TIMER 2.0 databases.

View Article and Find Full Text PDF

Multivalency as an interaction principle is widely utilized in nature. It enables specific and strong binding by multiple weak interactions through enhanced avidity and is a core process in immune recognition and cellular signaling, which is also a current concept in drug design. Here, we use the high signals from plasmon-enhanced fluorescence of nanoparticles to extract binding kinetics and dynamics of multivalent interactions on the single-molecule level and in real time.

View Article and Find Full Text PDF

Decoding the Nucleolar Role in Meiotic Recombination and Cell Cycle Control: Insights into Cdc14 Function.

Int J Mol Sci

November 2024

Instituto de Biología Funcional y Genómica, IBFG, CSIC-USAL, 37007 Salamanca, Spain.

The cell cycle, essential for growth, reproduction, and genetic stability, is regulated by a complex network of cyclins, Cyclin-Dependent Kinases (CDKs), phosphatases, and checkpoints that ensure accurate cell division. CDKs and phosphatases are crucial for controlling cell cycle progression, with CDKs promoting it and phosphatases counteracting their activity to maintain balance. The nucleolus, as a biomolecular condensate, plays a key regulatory role by serving as a hub for ribosome biogenesis and the sequestration and release of various cell cycle regulators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!