Circadian rhythms of body temperature and activity levels during 63 h of hypoxia in the rat.

Am J Physiol Regul Integr Comp Physiol

Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA.

Published: October 2000

The hypothermic response of rats to only brief ( approximately 2 h) hypoxia has been described previously. The present study analyzes the hypothermic response in rats, as well as level of activity (L(a)), to prolonged (63 h) hypoxia at rat thermoneutral temperature (29 degrees C). Mini Mitter transmitters were implanted in the abdomens of 10 adult Sprague-Dawley rats to continuously record body temperature (T(b)) and L(a). After habituation for 7 days to 29 degrees C and 12:12-h dark-light cycles, 48 h of baseline data were acquired from six control and four experimental rats. The mean T(b) for the group oscillated from a nocturnal peak of 38.4 +/- 0.18 degrees C (SD) to a diurnal nadir of 36.7 +/- 0.15 degrees C. Then the experimental group was switched to 10% O(2) in N(2). The immediate T(b) response, phase I, was a disappearance of circadian rhythm and a fall in T(b) to 36.3 +/- 0.52 degrees C. In phase II, T(b) increased to a peak of 38.7 +/- 0.64 degrees C. In phase III, T(b) gradually decreased. At reoxygenation at the end of the hypoxic period, phase IV, T(b) increased 1.1 +/- 0.25 degrees C. Before hypoxia, L(a) decreased 70% from its nocturnal peak to its diurnal nadir and was entrained with T(b). With hypoxia L(a) decreased in phase I to essential quiescence by phase II. L(a) had returned, but only to a low level in phase III, and was devoid of any circadian rhythm. L(a) resumed its circadian rhythm on reoxygenation. We conclude that 63 h of sustained hypoxia 1) completely disrupts the circadian rhythms of both T(b) and L(a) throughout the hypoxic exposure, 2) the hypoxia-induced changes in T(b) and L(a) are independent of each other and of the circadian clock, and 3) the T(b) response to hypoxia at thermoneutrality has several phases and includes both hypothermic and hyperthermic components.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.2000.279.4.R1378DOI Listing

Publication Analysis

Top Keywords

circadian rhythm
12
circadian rhythms
8
body temperature
8
hypoxia rat
8
hypothermic response
8
response rats
8
nocturnal peak
8
diurnal nadir
8
degrees phase
8
phase increased
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!