A correlation of erythrokinetics, ineffective erythropoiesis, and erythroid precursor apoptosis in thai patients with thalassemia.

Blood

Thalassemia Research Center, Institute of Sciences and Technology for Research and Development, Mahidol University, Salaya Campus, Nakornprathom, Thailand.

Published: October 2000

The variety of patients with thalassemia in Thailand offers an opportunity to fully characterize the kinetic causes of the anemia and to study apoptosis of marrow erythroid precursors as a possible factor contributing to its severity. Kinetic studies showed that in hemoglobin H (HbH) disease, the extent of hemolysis, as well as the minimally ineffective erythropoiesis, usually falls within the compensatory capacity of normal erythropoiesis; therefore, anemia in patients with HbH partly represents a failure to expand erythropoiesis adequately. Hemoglobin Constant Spring (HbCS), a common variant of alpha thalassemia in Bangkok, causes more severe hemolysis and a distinct increase in ineffective erythropoiesis. Ineffective erythropoiesis plays a much more prominent role in beta thalassemia/hemoglobin E (beta-thal/HbE) disease, in which the variability of the anemia is puzzling. We compared mild and severe cases and found that patients with severe disease had a maximal marrow erythropoietic response that failed to compensate for very short survival of red blood cells and a marked quantitative increase in ineffective erythropoiesis. Analysis of apoptosis of marrow erythroid precursors done both on shipped samples and in Bangkok showed a moderate increase in HbH disease, consistent with the small increase in ineffective erythropoiesis. In patients with homozygous HbCS, there was a further increase in apoptosis, consistent with the additional increase in ineffective erythropoiesis. Patients with beta-thal/HbE disease had the most ineffective erythropoiesis and the most erythroid apoptosis. Thus, it appears that alpha-chain deposition in erythroid precursors, either alpha(A) or alpha(cs), leads to accelerated apoptosis and ineffective erythropoiesis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ineffective erythropoiesis
36
increase ineffective
16
erythroid precursors
12
erythropoiesis
11
ineffective
9
erythropoiesis erythroid
8
patients thalassemia
8
apoptosis marrow
8
marrow erythroid
8
hbh disease
8

Similar Publications

Article Synopsis
  • Thalassaemia stems from over 250 mutations in the beta globin gene, impacting hematopoietic stem cell differentiation and causing ineffective red blood cell production.
  • The traditional focus on managing symptoms with transfusions and iron chelation therapy has hindered progress toward developing cell-based treatments, despite advancements in understanding the disease since the identification of the beta039 mutation in 1979.
  • Recent progress in treating hematopoietic stem cell disorders emphasizes a 'target cell strategy,' suggesting a shift toward innovative treatments for thalassaemia that identify suitable candidates through risk stratification, highlighting its nature as a congenital HSC disorder.
View Article and Find Full Text PDF

A number of studies have reported an association between phosphorus, red blood cell (RBC) production, and iron metabolism. However, it is difficult to distinguish whether the effect of phosphorus is direct or through the actions of FGF23, and it is not clear whether phosphorus is positively or negatively associated with RBC production. In the present study, we investigated the effects of a) increased phosphorus load and b) phosphorus deficiency on erythropoiesis and iron metabolism in association with FGF23.

View Article and Find Full Text PDF

The role of miR-129-5p in regulating γ-globin expression and erythropoiesis in β-thalassemia.

Hum Mol Genet

December 2024

College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 88 Jiaotong Road, Taijiang District, Fuzhou 350004, China.

The regulation of γ-globin expression is crucial due to its beneficial effects on diseases like β-thalassemia and sickle cell disease. B-cell lymphoma/leukemia 11A (BCL11A) is a significant suppressor of γ-globin, and microRNAs (miRNAs) targeting BCL11A have been shown to alleviate this suppression. In our previous high-throughput sequencing, we identified an 11.

View Article and Find Full Text PDF

X-linked sideroblastic anemia (XLSA) is a congenital anemia caused by mutations in ALAS2, a gene responsible for heme synthesis. Treatments are limited to pyridoxine supplements and blood transfusions, offering no definitive cure except for allogeneic hematopoietic stem cell transplantation, only accessible to a subset of patients. The absence of a suitable animal model has hindered the development of gene therapy research for this disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!