Involvement of sphingomyelinases in TNF signaling pathways.

Chem Phys Lipids

Institute of Medical Microbiology and Hygiene, Medical Center University of Cologne, Köln, Germany.

Published: November 1999

Sphingomyelin (N-acylsphingosin-1-phosphorylcholine) is a phospholipid preferentially found in the plasma membrane of mammalian cells. Signaling through the sphingomyelin pathway is associated with generation of ceramide, which acts as a second messenger in activating a variety of cellular functions. Ceramide belongs to the group of sphingosine-based lipid second messenger molecules that are critically involved in the regulation of signal transduction of diverse cell surface membrane receptors. The emerging picture suggests that coupling of ceramide to specific signaling cascades is both stimulus- and cell type-specific and depends on the subcellular topology of its production. Following membrane receptor triggering, neutral and acid isoforms of sphingomyelinases are rapidly activated generating ceramide through sphingomyelin hydrolysis. Here the molecular mechanisms of TNF-induced activation of sphingomyelinases and the functional consequences of ceramide generation will be discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0009-3084(99)00084-5DOI Listing

Publication Analysis

Top Keywords

second messenger
8
ceramide
5
involvement sphingomyelinases
4
sphingomyelinases tnf
4
tnf signaling
4
signaling pathways
4
pathways sphingomyelin
4
sphingomyelin n-acylsphingosin-1-phosphorylcholine
4
n-acylsphingosin-1-phosphorylcholine phospholipid
4
phospholipid preferentially
4

Similar Publications

Phosphodiesterase (PDE) enzymes regulate intracellular signaling pathways crucial for brain development and the pathophysiology of neurological disorders. Among the 11 PDE subtypes, PDE4 and PDE5 are particularly significant due to their regulation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) signaling, respectively, which are vital for learning, memory, and neuroprotection. This review synthesizes current evidence on the roles of PDE4 and PDE5 in neurological health and disease, focusing on their regulation of second messenger pathways and their implications for brain function.

View Article and Find Full Text PDF

The development of small molecule drugs that target protein binders is the central goal in medicinal chemistry. During the lead compound development process, hundreds or even thousands of compounds are synthesized, with the primary focus on their binding affinity to protein targets. Typically, IC or EC values are used to rank these compounds.

View Article and Find Full Text PDF

Metagenomes present a source for novel enzymes, but under 1% of environmental microbes are cultivatable. Because of its useful properties, Escherichia coli has been used as a host organism in functional genomic screens. However, due to differing expression machineries in the expression host compared to the source organism of the DNA sequences, screening outcomes can be biased.

View Article and Find Full Text PDF

Regulation of myocardial contraction as revealed by intracellular Ca measurements using aequorin.

J Physiol Sci

January 2025

Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, 105-8461, Tokyo, Japan.

Of the ions involved in myocardial function, Ca is the most important. Ca is crucial to the process that allows myocardium to repeatedly contract and relax in a well-organized fashion; it is the process called excitation-contraction coupling. In order, therefore, for accurate comprehension of the physiology of the heart, it is fundamentally important to understand the detailed mechanism by which the intracellular Ca concentration is regulated to elicit excitation-contraction coupling.

View Article and Find Full Text PDF

Objective: The role of adiponectin (APN) in regulating inflammation is well recognized in metabolic disease, but the dysregulation of APN in lower respiratory tract infection (LRTI) remains controversial. We aimed to measure APN and its signaling receptors, adiponectin receptor (AdipoR), in peripheral blood mononuclear cells (PBMCs) from LRTI patients to explore their potential roles in the LRTI process.

Methods: A total of 99 LRTI patients from the Second Xiangya Hospital of Central South University were categorized into acute (n=35) and non-acute (n=64), and non-severe (n=62) and severe (n=37) groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!