We previously demonstrated differential interactions of the methoxychlor metabolite 2,2-bis(p-hydroxyphenyl)-1,1, 1-trichloroethane (HPTE) with estrogen receptor alpha (ERalpha), ERbeta, and the androgen receptor (AR). In this study, we characterize the ERalpha, ERbeta, and AR activity of structurally related methoxychlor metabolites. Human hepatoma cells (HepG2) were transiently transfected with human ERalpha, ERbeta, and AR plus an appropriate steroid-responsive luciferase reporter vector. After transfection, cells were treated with various concentrations of HPTE or structurally related compounds in the presence (for detecting antagonism) and absence (for detecting agonism) of 17beta-estradiol and dihydrotestosterone. The monohydroxy analog of methoxychlor, as well as monohydroxy and dihydroxy analogs of 2, 2-bis(p-hydroxyphenyl)-1,1-dichloroethylene, had ERalpha agonist activity and ERbeta and AR antagonist activity similar to HPTE. The trihydroxy metabolite of methoxychlor displayed only weak ERalpha agonist activity and did not alter ERbeta or AR activities. Replacement of the trichloroethane or dichloroethylene group with a methyl group resulted in a compound with ERalpha and ERbeta agonist activity that retained antiandrogenic activities. This study identifies some of the structural requirements for ERalpha and ERbeta activity and demonstrates the complexity involved in determining the mechanism of action of endocrine-active chemicals that simultaneously act as agonists or antagonists through one or more hormone receptors.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!